Justin Hilburn

Positions Held
- Postdoctoral Researcher, Perimeter Institute for Theoretical Physics, 2019-2022
Recent Publications
- Gaiotto, D., Hilburn, J., Redondo-Yuste, J., Webster, B., & Zhou, Z. (2023). Twisted traces on abelian quantum Higgs and Coulomb branches. arxiv:2308.15198v1
- Hilburn, J., Kamnitzer, J., & Weekes, A. (2023). BFN Springer Theory. Communications in Mathematical Physics, 402(1), 765-832. doi:10.1007/s00220-023-04735-4
- Hilburn, J., & Raskin, S. (n.d.). Tate’s thesis in the de Rham setting. Journal of the American Mathematical Society, 36(3), 917-1001. doi:10.1090/jams/1010
- Gammage, B., & Hilburn, J. (2022). Betti Tate's thesis and the trace of perverse schobers. arxiv:2210.06548v1
- Gammage, B., Hilburn, J., & Mazel-Gee, A. (2022). Perverse schobers and 3d mirror symmetry. arxiv:2202.06833v2
- Hilburn, J., & Raskin, S. (2021). Tate's thesis in the de Rham Setting. arxiv:2107.11325v1
- Dimofte, T., Garner, N., Geracie, M., & Hilburn, J. (2020). Mirror symmetry and line operators. Journal of High Energy Physics, 2020(2). doi:10.1007/jhep02(2020)075
Seminars
- 3d Mirror Symmetry and 3d TQFT, LAWRGE 2023, University of Southern California, Mathematics, Los Angeles, United States, 2023/06/12
- An introduction to geometric representation theory and 3d mirror symmetry, Seoul National University, Mathematics, Seoul, South Korea, 2023/02/21
- 2-Categorification of Category O and 3d Mirror Symmetry, Indian Institute of Science Bangalore, Bengaluru, India, 2023/02/17
- Towards 2-Categorical 3d Mirror Symmetry, Kansas State University, Mathematics, Manhattan, United States, 2022/10/20, Video URL
- The 3d A-model: generalized Seiberg-Witten equations, vortices and monopoles, Gauged Maps, Vortices and Their Moduli, SwissMap Research Station, Le Vernex 9, Les Diablerets, 1865, Switzerland, 2022/08/22, Video URL
- Discussion on 3d A-model, QFT for Mathematicians 2022, 2022/06/28, PIRSA:22060086
- A and B Models in 3d and 4d II, QFT for Mathematicians 2022, 2022/06/24, PIRSA:22060076
- A and B models in 3d and 4d I, QFT for Mathematicians 2022, 2022/06/21, PIRSA:22060066
- Towards 2-Categorical 3d Abelian Mirror Symmetry: Equivariant Perverse Scobers, Mathematical Physics, 2022/02/18, PIRSA:22020061