Aleksander Kubica

  • Levine, H., Haim, A., Hung, J. S. C., Alidoust, N., Kalaee, M., DeLorenzo, L., . . . Painter, O. (2023). Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons. doi:10.1103/PhysRevX.14.011051
  • Gu, S., Tang, E., Caha, L., Choe, S. H., He, Z., & Kubica, A. (2023). Single-shot decoding of good quantum LDPC codes. doi:10.1007/s00220-024-04951-6
  • Ray, A., Laflamme, R., & Kubica, A. (2023). Protecting information via probabilistic cellular automata. arxiv:2304.03240v1
  • Kubica, A., & Delfosse, N. (n.d.). Efficient color code decoders in $d\geq 2$ dimensions from toric code decoders. Quantum, 7, 929. doi:10.22331/q-2023-02-21-929
  • Kubica, A., & Vasmer, M. (n.d.). Single-shot quantum error correction with the three-dimensional subsystem toric code. Nature Communications, 13(1), 6272. doi:10.1038/s41467-022-33923-4
  • Kubica, A., Haim, A., Vaknin, Y., Brandão, F., & Retzker, A. (2022). Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits. doi:10.1103/PhysRevX.13.041022
  • Vasmer, M., & Kubica, A. (2022). Morphing Quantum Codes. PRX Quantum, 3(3), 030319. doi:10.1103/prxquantum.3.030319
  • Xu, Q., Mannucci, N., Seif, A., Kubica, A., Flammia, S. T., & Jiang, L. (2022). Tailored XZZX codes for biased noise. doi:10.48550/arxiv.2203.16486
  • Higgott, O., Bohdanowicz, T. C., Kubica, A., Flammia, S. T., & Campbell, E. T. (2022). Improved decoding of circuit noise and fragile boundaries of tailored surface codes. arxiv:2203.04948v5
  • Dua, A., Kubica, A., Jiang, L., Flammia, S. T., & Gullans, M. J. (2022). Clifford-deformed Surface Codes. doi:10.48550/arxiv.2201.07802
  • Bostanci, J., & Kubica, A. (2021). Finding the disjointness of stabilizer codes is NP-complete. Physical Review Research, 3(4), 043192. doi:10.1103/physrevresearch.3.043192
  • Bostanci, J., & Kubica, A. (2021). Finding the disjointness of stabilizer codes is NP-complete. doi:10.48550/arxiv.2108.04738
  • Beverland, M. E., Kubica, A., & Svore, K. M. (2021). Cost of Universality: A Comparative Study of the Overhead of State Distillation and Code Switching with Color Codes. PRX Quantum, 2(2), 020341. doi:10.1103/prxquantum.2.020341
  • Kubica, A., & Demkowicz-Dobrzanski, R. (2021). Using Quantum Metrological Bounds in Quantum Error Correction: A Simple Proof of the Approximate Eastin-Knill Theorem. Physical Review Letters, 126(15), 150503. doi:10.1103/physrevlett.126.150503
  • Vasmer, M., Browne, D. E., & Kubica, A. (n.d.). Cellular automaton decoders for topological quantum codes with noisy measurements and beyond. Scientific Reports, 11(1), 2027. doi:10.1038/s41598-021-81138-2