Skip to main content

PIRSA ID: 20040084

Série : Mathematical Physics

Event Type: Seminar

Domaine(s) scientifique(s) : Mathematical Physics

Date de fin : 2020-04-09

Speaker(s): Constantin Teleman University of California - Berkeley (UCB)

I will review the construction of Coulomb branches in 3D gauge theory for a compact Lie group G and a quaternionic  representation E. In the case when E is polarized, these branches are determined by topological boundary conditions built from the gauged A-model of the two polar halves of E. No analogue of this is apparent in the absence of a polarization, nonetheless the Coulomb branch can be defined by the use of a ‘quantum’ square root of E (related to the Spin representation). These branches ought to be part of a 3D topological field theory, but that is only apparent in special cases.