Quantizing Time
Whatever the final theory of quantum gravity turns out to be, it will need to reconcile the incongruent ways in which time appears in quantum mechanics and general relativity. Quantum mechanics treats time as a classical background parameter, which is different than the way other observables, such as position and momentum, are treated. In stark contrast, general relativity promotes time to a dynamical quantity in the sense that Einstein’s equations relate how clocks behave in relative motion or differing gravitational fields. The aim of this conference is to discuss the full consequences of treating time as a quantum phenomena in light of the recent progress on information-theoretic and operational descriptions of time as quantum observable. Topics discussed will include indefinite causal structures, the Page-Wootters formalism, relational quantum mechanics, quantum reference frames, the problem of time, and experimental implications.