- Home »
- Latham Boyle

I work on a number of different topics including gravitational waves, black holes, early universe cosmology, non-commutative geometry (and its application to standard-model and beyond-the-standard-model physics), and exotic crystals (including choreographic crystals and quasi-crystals).

For centuries, astronomers have been exploring the universe with telescopes that detect electromagnetic waves (disturbances in the electromagnetic field that move at the speed of light). Much more recently, physicists have been developing new types of telescopes to detect *gravitational* waves (disturbances in the gravitational field that also move at the speed of light). Gravitational wave astronomy is lagging behind electromagnetic astronomy by several centuries because gravitational waves are so hard to detect! On the bright side, this means that the age of great discovery in gravitational wave astronomy is still ahead of us: in fact, there are reasons to expect that it will begin with the first direct detection of gravitational waves later in this decade. Gravitational waves will open a new window on the cosmos -- a window that looks out on strange and unfamiliar scenery (violent processes in the very early universe, black holes swallowing neutron stars, and other phenomena that we probably won't even imagine until they surprise us by turning up in our detectors). Much of my work has to do with understanding how gravitational waves may be used to learn about the universe (especially the very early universe), and thinking about the best designs for future gravitational wave telescopes.

- 2010/01-present, Perimeter Institute for Theoretical Physics, Junior Faculty
- 2006/09-2009/12, Canadian Institute for Theoretical Astrophysics, Postdoctoral Fellow

- The article "Quantifying the BICEP2-Planck Tension over Gravitational Waves" by Kendrick M. Smith, Cora Dvorkin, Latham Boyle, Neil Turok, Mark Halpern, Gary Hinshaw and Ben Gold (Phys.Rev.Lett.113:031301, 2014 [http://arxiv.org/abs/arXiv:1404.0373]) was selected as an "Editor's Suggestion" by Physical Review Letters.
- The article "Proving Inflation: A Bootstrap Approach" by Latham Boyle and Paul Steinhardt (Phys.Rev.Lett.105:241301, 2010 [http://arxiv.org/abs/arXiv:0810.2787]) was selected by Physical Review as the subject of a feature article in the APS journal Physics (the "Viewpoint" article "Can we test the inflationary expansion of the early universe?" by Arthur Kosowsky).
- CIFAR Junior Fellowship, Canadian Institute for Advanced Research

- "Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry," Shane Farnsworth and Latham Boyle, New J. Phys. 17, 023021 (2015) [http://arxiv.org/abs/1408.5367].
- "Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics," Latham Boyle and Shane Farnsworth, New J. Phys. 16, 123027 (2014) [http://arxiv.org/abs/1401.5083].
- "Quantifying the BICEP2/Planck tension over gravitational waves," (a.k.a. "On quantifying and resolving the BICEP2/Planck tension over gravitational waves") Kendrick M. Smith, Cora Dvorkin, Latham Boyle, Neil Turok, Mark Halpern, Gary Hinshaw and Ben Gold, Physical Review Letters 113, 031301 (2014) [http://arxiv.org/abs/arXiv: 1404.0373]
- "Pulsar timing arrays as imaging gravitational wave telescopes: angular resolution and source (de)confusion," Latham Boyle and Ue-Li Pen, Physical Review D 86, 124028 (2012) [http://arxiv.org/abs/1010.4337].
- "Testing Inflation: A Bootstrap Approach," Physical Review Letters 105, 241301 (2010) [http://arxiv.org/abs/arXiv: 0810.2787].
- "Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: implications for the early universe," Physical Review D 78, 043531 (2008) [http://arxiv.org/abs/arXiv: 0708.2279].
- "The spin expansion for binary black hole merger: new predictions and future directions," Physical Review D 78, 024017 (2008) [http://arxiv.org/abs/arXiv: 0712.2819].
- "Binary black hole merger: symmetry and the spin expansion," Physical Review Letters 100, 151101 (2008) [http://arxiv.org/abs/arXiv: 0709.0299].
- "Probing the early universe with inflationary gravitational waves," Physical Review D 77, 063504 (2008) [http://arxiv.org/abs/astro-ph/0512014].
- "Inflationary predictions for scalar and tensor fluctuations reconsidered," Latham Boyle, Paul Steinhardt and Neil Turok, Physical Review Letters 96, 111301 (2006) [http://arxiv.org/abs/astro-ph/0507455].
- "On testing and extending the inflationary consistency relation for tensor modes," Latham Boyle, Kendrick M. Smith, Cora Dvorkin and Neil Turok, arXiv: 1408.3129 [http://arxiv.org/abs/1408.3129].
- "Symmetric Satellite Swarms and Choreographic Crystals," Latham Boyle, Jun Yong Khoo and Kendrick Smith, arXiv: 1407.5876 [http://arxiv.org/abs/1407.5876].
- "Non-Associative Geometry and the Spectral Action Principle," Shane Farnsworth and Latham Boyle arXiv: 1303.1782 [http://arxiv.org/abs/1303.1782]
- "The Minimal Dimensionless Standard Model (MDSM) and its Cosmology," Latham Boyle, Shane Farnsworth, Joseph Fitzgerald and Maitagorri Schade, arXiv: 1111.0273 [http://arxiv.org/abs/1111.0273].
- "Light Loop Echoes and Blinking Black Holes," Latham Boyle and Matthew Russo, arXiv: 1110.2789 [http://arxiv.org/abs/1110.2789].
- "The general theory of porcupines, perfect and imperfect," Latham Boyle, arXiv: 1008.4997 [http://arxiv.org/abs/1008.4997].
- "Perfect porcupines: ideal networks for low frequency gravitational wave astronomy," Latham Boyle, arXiv: 1003.4946 [http://arxiv.org/abs/1003.4946].

- "Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics," Conceptual and Technical Challenges for Quantum Gravity 2014 Conference, Rome
- "Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics," Quantum Physics and Non-Commutative Geometry Workshop, Hausdorff Institute for Mathematics, Bonn
- "On Testing and Extending the Inflationary Consistency Relation for Tensor Modes," COSMO 2014 Conference, Chicago
- "Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics," Theory Canada 9, Waterloo
- "Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics," CCGRRA 2014, Winnipeg
- "Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics," Searching for Simplicity Workshop, Princeton Center for Theoretical Science
- "Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics," Western University, London
- "Pulsar Timing Arrays as Imaging Gravitational Wave Telescopes: Angular Resolution and Source (De)Confusion," 27th Texas Symposium on Relativistic Astrophysics, Dallas
- "From Almost-Commutative to Almost-Associative Geometries: Key Concepts and Illustrations," Non-Commutative Geometry and Particle Physics Workshop, Lorentz Centre, Leiden
- "Non-Associative Geometry and the Spectral Action Principle," 16th Eastern Gravity Meeting, Toronto
- "Gravitational Wave Telescopes, Time-Delay Interferometers and Choreographic Crystals," Canadian Institute for Theoretical Astrophysics (CITA), Toronto
- "Gravitational Wave Telescopes, Time-Delay Interferometers and Choreographic Crystals," University of Waterloo, Astrophysics Seminar
- "Gravitational Wave Telescopes, Time-Delay Interferometers and Choreographic Crystals," Kavli Institute for Cosmological Physics (KICP), University of Chicago
- "Platonic Orbits, Symmetric Satellite Constellations, Dynamical Lattices and Low Frequency Gravitational Wave Telescopes," Institute for Advanced Study (IAS), Princeton
- "Platonic Orbits, Symmetric Satellite Constellations, Dynamical Lattices and Low Frequency Gravitational Wave Telescopes," University of Ottawa
- "Platonic Orbits and Fully Democratic Satellite Constellations," CIFAR Annual Cosmology and Gravity Meeting (Whistler, British Columbia)
- "The Wave Function of the Universe," Vision Speaker at Quantum and Nano Computing Advanced School, Agra, India
- "Gravitational Waves in Cosmology," Lectures at IUCAA School on Cosmology and Gravitational Waves, Pune, India
- "Gravitational Wave Telescopes and the Early Universe," Physics Colloquium, University of Western Ontario
- "Gravitational Wave Telescopes and the Early Universe," Physics Colloquium, University of Guelph
- "Low Frequency Gravitational Wave Telescopes," Cosmological Frontiers In Fundamental Physics Workshop, Paris
- "Pulsar Timing Arrays as Imaging Gravitational Wave Telescopes," International Pulsar Timing Array Meeting, West Virginia (had to withdraw, unfortunately)
- "Low Frequency Gravitational Wave Telescopes," Black Holes VIII Conference, Niagara Falls
- "Pulsar Timing Arrays as Gravitational Wave Telescopes," CIFAR Annual Cosmology and Gravity Meeting (Whistler, British Columbia)
- "Gravitational wave telescopes," Hawken School, Cleveland
- "Low frequency gravitational wave telescopes," Joint Astrophysics Colloquium, McGill University
- "Low frequency gravitational wave telescopes," Physics & Astronomy Department Colloquium, McMaster University
- "Observations about the wave function of the universe," PIAF Worskhop, Brisbane, Australia
- "Gravitational Wave Astronomy and Merging Black Holes," 2010 EinsteinPlus Keynote Address
- PIRSA:14070028, What"s Interesting These Days (With Gravity)?, 2014-07-23, ISSYP 2014
- PIRSA:14020102, 13/14 PSI - Cosmology Review - Lecture 13, 2014-02-14, 13/14 PSI - Cosmology Review
- PIRSA:14020101, 13/14 PSI - Cosmology Review - Lecture 12, 2014-02-13, 13/14 PSI - Cosmology Review
- PIRSA:14020021, 13/14 PSI - Cosmology Review - Lecture 11, 2014-02-12, 13/14 PSI - Cosmology Review
- PIRSA:14020018, 13/14 PSI - Cosmology Review - Lecture 10, 2014-02-11, 13/14 PSI - Cosmology Review
- PIRSA:14020017, 13/14 PSI - Cosmology Review - Lecture 9, 2014-02-10, 13/14 PSI - Cosmology Review
- PIRSA:14020014, 13/14 PSI - Cosmology Review - Lecture 8, 2014-02-07, 13/14 PSI - Cosmology Review
- PIRSA:14020013, 13/14 PSI - Cosmology Review - Lecture 7, 2014-02-06, 13/14 PSI - Cosmology Review
- PIRSA:14020012, 13/14 PSI - Cosmology Review - Lecture 6, 2014-02-04, 13/14 PSI - Cosmology Review
- PIRSA:14010069, 13/14 PSI - Cosmology Review - Lecture 5, 2014-02-03, 13/14 PSI - Cosmology Review
- PIRSA:14010068, 13/14 PSI - Cosmology Review - Lecture 4, 2014-01-31, 13/14 PSI - Cosmology Review
- PIRSA:14010111, What"s Happening in Cosmology?, 2014-01-30, PI Day 2014
- PIRSA:14010067, 13/14 PSI - Cosmology Review - Lecture 3, 2014-01-29, 13/14 PSI - Cosmology Review
- PIRSA:14010066, 13/14 PSI - Cosmology Review - Lecture 2, 2014-01-28, 13/14 PSI - Cosmology Review
- PIRSA:14010065, 13/14 PSI - Cosmology Review - Lecture 1, 2014-01-27, 13/14 PSI - Cosmology Review
- PIRSA:13070033, What's interesting these days (with gravity)?, 2013-07-18, Strong Gravity
- PIRSA:13030045, 12/13 PSI - Cosmology Review Lecture 14, 2013-03-08, 12/13 PSI - Cosmology Review
- PIRSA:13030044, 12/13 PSI - Cosmology Review Lecture 13, 2013-03-07, 12/13 PSI - Cosmology Review
- PIRSA:13030043, 12/13 PSI - Cosmology Review Lecture 12, 2013-03-06, 12/13 PSI - Cosmology Review
- PIRSA:13030042, 12/13 PSI - Cosmology Review Lecture 11, 2013-03-05, 12/13 PSI - Cosmology Review
- PIRSA:13030041, 12/13 PSI - Cosmology Review Lecture 10, 2013-03-04, 12/13 PSI - Cosmology Review
- PIRSA:13030038, 12/13 PSI - Cosmology Review Lecture 9, 2013-03-01, 12/13 PSI - Cosmology Review
- PIRSA:13020108, 12/13 PSI - Cosmology Review Lecture 8, 2013-02-28, 12/13 PSI - Cosmology Review
- PIRSA:13020107, 12/13 PSI - Cosmology Review Lecture 7, 2013-02-27, 12/13 PSI - Cosmology Review
- PIRSA:13020106, 12/13 PSI - Cosmology Review Lecture 6, 2013-02-26, 12/13 PSI - Cosmology Review
- PIRSA:13020105, 12/13 PSI - Cosmology Review Lecture 5, 2013-02-25, 12/13 PSI - Cosmology Review
- PIRSA:13020102, 12/13 PSI - Cosmology Review Lecture 4, 2013-02-22, 12/13 PSI - Cosmology Review
- PIRSA:13020101, 12/13 PSI - Cosmology Review Lecture 3, 2013-02-21, 12/13 PSI - Cosmology Review
- PIRSA:13020100, 12/13 PSI - Cosmology Review Lecture 2, 2013-02-20, 12/13 PSI - Cosmology Review
- PIRSA:13020099, 12/13 PSI - Cosmology Review Lecture 1, 2013-02-19, 12/13 PSI - Cosmology Review
- PIRSA:12020029, Cosmology (Review) - Lecture 15, 2012-02-10, 11/12 PSI - Cosmology (Review)
- PIRSA:12020028, Cosmology (Review) - Lecture 14, 2012-02-09, 11/12 PSI - Cosmology (Review)
- PIRSA:12020027, Cosmology (Review) - Lecture 13, 2012-02-08, 11/12 PSI - Cosmology (Review)
- PIRSA:12020026, Cosmology (Review) - Lecture 12, 2012-02-07, 11/12 PSI - Cosmology (Review)
- PIRSA:12020025, Cosmology (Review) - Lecture 11, 2012-02-06, 11/12 PSI - Cosmology (Review)
- PIRSA:12020022, Cosmology (Review) - Lecture 10, 2012-02-03, 11/12 PSI - Cosmology (Review)
- PIRSA:12020021, Cosmology (Review) - Lecture 9, 2012-02-02, 11/12 PSI - Cosmology (Review)
- PIRSA:12020020, Cosmology (Review) - Lecture 8, 2012-02-01, 11/12 PSI - Cosmology (Review)
- PIRSA:12010083, Cosmology (Review) - Lecture 7, 2012-01-31, 11/12 PSI - Cosmology (Review)
- PIRSA:12010082, Cosmology (Review) - Lecture 6, 2012-01-30, 11/12 PSI - Cosmology (Review)
- PIRSA:12010079, Cosmology (Review) - Lecture 5, 2012-01-27, 11/12 PSI - Cosmology (Review)
- PIRSA:12010078, Cosmology (Review) - Lecture 4, 2012-01-26, 11/12 PSI - Cosmology (Review)
- PIRSA:12010077, Cosmology (Review) - Lecture 3, 2012-01-25, 11/12 PSI - Cosmology (Review)
- PIRSA:12010076, Cosmology (Review) - Lecture 2, 2012-01-24, 11/12 PSI - Cosmology (Review)
- PIRSA:12010075, Cosmology (Review) - Lecture 1, 2012-01-23, 11/12 PSI - Cosmology (Review)
- PIRSA:11090122, Research Presentation - Cosmology and Strong Gravity, 2011-09-16, Cosmology & Gravitation
- PIRSA:11020098, Cosmology Review - Lecture 15, 2011-02-11, 10/11 PSI - Cosmology (Review)
- PIRSA:11020097, Cosmology Review - Lecture 14, 2011-02-11, 10/11 PSI - Cosmology (Review)
- PIRSA:11020096, Cosmology Review - Lecture 13, 2011-02-09, 10/11 PSI - Cosmology (Review)
- PIRSA:11020095, Cosmology Review - Lecture 12, 2011-02-08, 10/11 PSI - Cosmology (Review)
- PIRSA:11020094, Cosmology Review - Lecture 11, 2011-02-07, 10/11 PSI - Cosmology (Review)
- PIRSA:11020091, Cosmology Review - Lecture 10, 2011-02-04, 10/11 PSI - Cosmology (Review)
- PIRSA:11020090, Cosmology Review - Lecture 9, 2011-02-03, 10/11 PSI - Cosmology (Review)
- PIRSA:11020089, Cosmology Review - Lecture 8, 2011-02-02, 10/11 PSI - Cosmology (Review)
- PIRSA:11020088, Cosmology Review - Lecture 7, 2011-02-01, 10/11 PSI - Cosmology (Review)
- PIRSA:11010105, Cosmology Review - Lecture 6, 2011-01-31, 10/11 PSI - Cosmology (Review)
- PIRSA:11010102, Cosmology Review - Lecture 5, 2011-01-28, 10/11 PSI - Cosmology (Review)
- PIRSA:11010101, Cosmology Review - Lecture 4, 2011-01-27, 10/11 PSI - Cosmology (Review)
- PIRSA:11010100, Cosmology Review - Lecture 3, 2011-01-26, 10/11 PSI - Cosmology (Review)
- PIRSA:11010098, Cosmology Review - Lecture 1, 2011-01-24, 10/11 PSI - Cosmology (Review)
- PIRSA:11010099, Cosmology Review - Lecture 2, 2011-01-24, 10/11 PSI - Cosmology (Review)
- PIRSA:10070031, Gravitational Waves, 2010-07-26, EinsteinPlus 2010
- PIRSA:09030034, Three thoughts about black holes and cosmology, 2009-03-16, Cosmology & Gravitation
- PIRSA:08030032, Binary black hole merger: symmetry and the spin expansion, 2008-03-04, Cosmology & Gravitation

©2012 Perimeter Institute for Theoretical Physics