Roger Melko

University of Waterloo
Areas of research:
If you are interested in working with me as a PhD student, please submit an application directly to my department at the University of Waterloo and indicate that you would like to be supervised by me.
My group's interests involve strongly-correlated quantum many-body systems, with a focus on emergent phenomena, novel phases and phase transitions, quantum criticality, and entanglement. We emphasize computational methods as a theoretical technique, in particular the development of state-of-the-art algorithms for the study of strongly-interacting systems. Our work has employed Monte Carlo simulations, density matrix renormalization group, and modern machine learning methods. With these techniques, my group explores low-energy physics in quantum magnets, cold atoms in optical lattices, bosonic fluids, and quantum computers. I am particularly interesting in studying microscopic models that display interesting quantum behavior in the bulk, such as superconducting, spin liquid, topological, or error-correcting phases. We are also interested in broader ideas in computational physics, the development of efficient algorithms for simulating quantum mechanical systems on classical computers, and the relationship of these methods to the fields of machine learning and quantum information science.
  • Affiliate Faculty, Vector Institute for Artificial Intelligence, 2017-present
  • Scientific Lead, Creative Destruction Labs, 2017-present
  • Professor, Department of Physics and Astronomy, University of Waterloo, 2007-present
  • Tennessee Wigner Fellow, Oak Ridge National Laboratory, 2005-2007
  • Brockhouse Medal, CAP/DCMMP, 2021
  • Discovery Canada Research Chair Western Digital Research Grant, Natural Sciences and Engineering Research Council of Canada (NSERC), 2021
  • Herzberg Medal, Canadian Association of Physicists, 2016
  • Young Scientist Prize in Computational Physics, International Union of Pure and Applied Physics (IUPAP), 2012
  • Early Researcher Award, Province of Ontario, 2010
  • Lu, I., Jia, H., Gonzalez, S., Sogutlu, D., Toledo-Marin, J. Q., Hoque, S., . . . Fedorko, W. (2024). Zephyr quantum-assisted hierarchical Calo4pQVAE for particle-calorimeter interactions. doi:10.48550/arxiv.2412.04677
  • Yon, V., Galaup, B., Rohrbacher, C., Rivard, J., Godfrin, C., Li, R., . . . Drouin, D. (2024). Robust quantum dots charge autotuning using neural network uncertainty. Machine Learning: Science and Technology, 5(4), 045034. doi:10.1088/2632-2153/ad88d5
  • Alexeev, Y., Farag, M. H., Patti, T. L., Wolf, M. E., Ares, N., Aspuru-Guzik, A., . . . Costa, T. (2024). Artificial Intelligence for Quantum Computing. doi:10.48550/arxiv.2411.09131
  • Ibarra-García-Padilla, E., Lange, H., Melko, R. G., Scalettar, R. T., Carrasquilla, J., Bohrdt, A., & Khatami, E. (2024). Autoregressive neural quantum states of Fermi Hubbard models. doi:10.48550/arxiv.2411.07144
  • Toledo-Marin, J. Q., Gonzalez, S., Jia, H., Lu, I., Sogutlu, D., Abhishek, A., . . . Fedorko, W. (2024). Conditioned quantum-assisted deep generative surrogate for particle-calorimeter interactions. doi:10.48550/arxiv.2410.22870
  • Yon, V., Galaup, B., Rohrbacher, C., Rivard, J., Morel, A., Leclerc, D., . . . Drouin, D. (2024). Experimental Online Quantum Dots Charge Autotuning Using Neural Network. doi:10.48550/arxiv.2409.20320
  • Lin, J., MacLellan, B., Ghanbari, S., Belleville, J., Tran, K., Robichaud, L., . . . Roztocki, P. (n.d.). GraphiQ: Quantum circuit design for photonic graph states. Quantum, 8, 1453. doi:10.22331/q-2024-08-28-1453
  • Teoh, Y. H., & Melko, R. G. (2024). Autoregressive model path dependence near Ising criticality. doi:10.48550/arxiv.2408.15715
  • Melko, R. (2024). RydbergGPT occupation basis samples. https://pennylane.ai/datasets/other/rydberggpt
  • Fitzek, D., Teoh, Y. H., Fung, H. P., Dagnew, G. A., Merali, E., Moss, M. S., . . . Melko, R. G. (2024). RydbergGPT. doi:10.48550/arxiv.2405.21052
  • Hibat-Allah, M., Merali, E., Torlai, G., Melko, R. G., & Carrasquilla, J. (2024). Recurrent neural network wave functions for Rydberg atom arrays on kagome lattice. doi:10.48550/arxiv.2405.20384
  • Merali, E., De Vlugt, I. J. S., & Melko, R. G. (n.d.). Stochastic series expansion quantum Monte Carlo for Rydberg arrays. SciPost Physics Core, 7(2), 016. doi:10.21468/scipostphyscore.7.2.016
  • Luo, X. -Z., Luo, D., & Melko, R. G. (2024). Operator Learning Renormalization Group. doi:10.48550/arxiv.2403.03199
  • MacLellan, B., Roztocki, P., Czischek, S., & Melko, R. G. (2024). End-to-end variational quantum sensing. doi:10.48550/arxiv.2403.02394
  • King, A. D., Nocera, A., Rams, M. M., Dziarmaga, J., Wiersema, R., Bernoudy, W., . . . Amin, M. H. (2024). Computational supremacy in quantum simulation. doi:10.48550/arxiv.2403.00910
  • Moss, M. S., Ebadi, S., Wang, T. T., Semeghini, G., Bohrdt, A., Lukin, M. D., & Melko, R. G. (2024). Enhancing variational Monte Carlo simulations using a programmable quantum simulator. Physical Review A, 109(3), 032410. doi:10.1103/physreva.109.032410
  • Torlai, G., & Melko, R. G. (2024). Corner entanglement of a resonating valence bond wavefunction. doi:10.48550/arxiv.2402.17211
  • Melko, R. G., & Carrasquilla, J. (2024). Language models for quantum simulation. Nature Computational Science, 4(1), 11-18. doi:10.1038/s43588-023-00578-0
  • MacLellan, B., Roztocki, P., Czischek, S., & Melko, R. G. (2024). End-to-end variational quantum sensing. npj Quantum Information, 10(1), 118. doi:10.1038/s41534-024-00914-w
  • Hoque, S., Jia, H., Abhishek, A., Fadaie, M., Toledo-Marín, J. Q., Vale, T., . . . Fedorko, W. T. (2024). CaloQVAE: Simulating high-energy particle-calorimeter interactions using hybrid quantum-classical generative models. European Physical Journal C, 84(12), 1244. doi:10.1140/epjc/s10052-024-13576-x
  • Hoque, S., Jia, H., Abhishek, A., Fadaie, M., Toledo-Marín, J. Q., Vale, T., . . . Fedorko, W. T. (2023). CaloQVAE : Simulating high-energy particle-calorimeter interactions using hybrid quantum-classical generative models. doi:10.48550/arxiv.2312.03179
  • Moss, M. S., Ebadi, S., Wang, T. T., Semeghini, G., Bohrdt, A., Lukin, M. D., & Melko, R. G. (2023). Enhancing variational Monte Carlo using a programmable quantum simulator. doi:10.48550/arxiv.2308.02647
  • Hibat-Allah, M., Melko, R. G., & Carrasquilla, J. (2023). Investigating topological order using recurrent neural networks. Physical Review B, 108(7), 075152. doi:10.1103/physrevb.108.075152
  • Iouchtchenko, D., Gonthier, J. F., Perdomo-Ortiz, A., & Melko, R. G. (2023). Neural network enhanced measurement efficiency for molecular groundstates. Machine Learning: Science and Technology, 4(1), 015016. doi:10.1088/2632-2153/acb4df
  • Merali, E., De Vlugt, I. J. S., & Melko, R. G. (2023). Stochastic Series Expansion Quantum Monte Carlo for Rydberg Arrays. doi:10.21468/scipost.report.6735
  • Merali, E., De Vlugt, I. J. S., & Melko, R. G. (2023). Stochastic Series Expansion Quantum Monte Carlo for Rydberg Arrays. doi:10.21468/scipost.report.6713
  • Merali, E., De Vlugt, I. J. S., & Melko, R. G. (2023). Stochastic Series Expansion Quantum Monte Carlo for Rydberg Arrays. doi:10.21468/scipost.report.6678
  • Bova, F., Goldfarb, A., & Melko, R. G. (2023). Quantum Economic Advantage. Management Science, 69(2), 1116-1126. doi:10.1287/mnsc.2022.4578
  • Serwatka, T., Melko, R. G., Burkov, A., & Roy, P. -N. (2023). Quantum Phase Transition in the One-Dimensional Water Chain. Physical Review Letters, 130(2), 026201. doi:10.1103/physrevlett.130.026201
  • Bova, F., Goldfarb, A., & Melko, R. (n.d.). Quantum Economic Advantage. doi:10.2139/ssrn.4028340
  • Wetzel, S. J., Melko, R. G., & Tamblyn, I. (2022). Twin neural network regression is a semi-supervised regression algorithm. Machine Learning: Science and Technology, 3(4), 045007. doi:10.1088/2632-2153/ac9885
  • Wetzel, S. J., Ryczko, K., Melko, R. G., & Tamblyn, I. (2022). Twin neural network regression. Applied AI Letters, 3(4). doi:10.1002/ail2.78
  • Sehayek, D., & Melko, R. G. (2022). Persistent homology of Z2 gauge theories. Physical Review B, 106(8), 085111. doi:10.1103/physrevb.106.085111
  • Hibat-Allah, M., Melko, R. G., & Carrasquilla, J. (2022). Supplementing Recurrent Neural Network Wave Functions with Symmetry and Annealing to Improve Accuracy. doi:10.48550/arxiv.2207.14314
  • Timmerman, S. R., Bandic, Z., & Melko, R. (n.d.). Quantum to classical mapping of the two-dimensional toric code in an external field. SciPost Physics Lecture Notes, 057. doi:10.21468/scipostphyslectnotes.57
  • Inack, E. M., Morawetz, S., & Melko, R. G. (n.d.). Neural Annealing and Visualization of Autoregressive Neural Networks in the Newman–Moore Model. Condensed Matter, 7(2), 38. doi:10.3390/condmat7020038
  • Czischek, S., Moss, M. S., Radzihovsky, M., Merali, E., & Melko, R. G. (2022). Data-enhanced variational Monte Carlo simulations for Rydberg atom arrays. Physical Review B, 105(20), 205108. doi:10.1103/physrevb.105.205108
  • Kalinowski, M., Samajdar, R., Melko, R. G., Lukin, M. D., Sachdev, S., & Choi, S. (2022). Bulk and boundary quantum phase transitions in a square Rydberg atom array. Physical Review B, 105(17), 174417. doi:10.1103/physrevb.105.174417
  • Inack, E. M., Morawetz, S., & Melko, R. G. (2022). Neural annealing and visualization of autoregressive neural networks in the Newman-Moore model. doi:10.48550/arxiv.2204.11272
  • Yon, V., Amirsoleimani, A., Alibart, F., Melko, R. G., Drouin, D., & Beilliard, Y. (n.d.). Exploiting Non-idealities of Resistive Switching Memories for Efficient Machine Learning. Frontiers in Electronics, 3, 825077. doi:10.3389/felec.2022.825077
  • Golubeva, A., & Melko, R. G. (2022). Pruning a restricted Boltzmann machine for quantum state reconstruction. Physical Review B, 105(12), 125124. doi:10.1103/physrevb.105.125124
  • Czischek, S., Yon, V., Genest, M. -A., Roux, M. -A., Rochette, S., Lemyre, J. C., . . . Melko, R. G. (2022). Miniaturizing neural networks for charge state autotuning in quantum dots. Machine Learning: Science and Technology, 3(1), 015001. doi:10.1088/2632-2153/ac34db
  • Ryczko, K., Wetzel, S. J., Melko, R. G., & Tamblyn, I. (2022). Toward Orbital-Free Density Functional Theory with Small Data Sets and Deep Learning. Journal of Chemical Theory and Computation, 18(2), 1122-1128. doi:10.1021/acs.jctc.1c00812
  • Timmerman, S. R., Bandic, Z. Z., & Melko, R. G. (2022). Quantum to classical mapping of the two-dimensional toric code in an external field. doi:10.21468/scipost.report.4261
  • Language models for Quantum Simulation, Waterloo-Munich Joint Workshop, 2024/10/03, PIRSA:24100055
  • São Paulo School of Advanced Science on Quantum Materials, University of São Paulo, Instituto de Física, Sao Paulo, Brazil, 2024/07/17
  • CIBC Infosec 2024, Canadian Imperial Bank of Commerce (Canada), Toronto, Canada, 2024/07/02
  • Kharkiv Quantum Seminar, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine, 2024/06/25
  • Machine Learning Lecture, Machine Learning 2023/24, 2024/04/25, PIRSA:24040053
  • Language Models for Quantum Simulation, University of Illinois at Urbana-Champaign, Physics, Urbana, United States, 2024/04/01
  • Yale Physics Club, Yale University, New Haven, United States, 2024/02/26
  • Building the world’s first open source quantum computer, Xanadu, Toronto, 2024/02/09
  • OPEN-SOURCE QUANTUM COMPUTING PANEL, Q2B, San Jose, California, 2023/12/07
  • Workshop II: Mathematical Aspects of Quantum Learning, University of California, Los Angeles, Los Angeles, United States, 2023/10/20
  • Language Models for Quantum Simulation, Harvard University, Physics, Cambridge, United States, 2023/10/11
  • Welcome and Opening Remarks, Machine Learning for Quantum Many-Body Systems, 2023/06/12, PIRSA:23060027
  • LECTURE: Generative Modelling, Quantum and AI Career Trajectories Mini-Course: Computational Methods and their Applications, 2023/05/10, PIRSA:23050095
  • LECTURE: Generative Modelling, Quantum and AI Career Trajectories Mini-Course: Computational Methods and their Applications, 2023/05/09, PIRSA:23050097
  • LECTURE: Generative Modelling, Quantum and AI Career Trajectories Mini-Course: Computational Methods and their Applications, 2023/05/08, PIRSA:23050140
  • Machine Learning Lecture - 230330, Machine Learning for Many-Body Physics (2022/2023), 2023/03/30, PIRSA:23030037
  • Generative models for quantum state reconstruction, University of Waterloo, Computaitonal Mathematics, Waterloo, Canada, 2022/11/30, Video URL
  • Generative models for Rydberg atom arrays, NORTIDA, Sweden, 2022/08/31
  • Welcome and Opening Remarks, Quantum Criticality: Gauge Fields and Matter, 2022/05/16, PIRSA:22050026
  • Machine Learning (2021/2022), Machine Learning (2021/2022), 2022/05/05, PIRSA:22050011