Fermionic Gaussian Circuits for Tensor Networks: Application to the Single Impurity Anderson Model

PIRSA ID: 23010114
Event Type: Seminar
Scientific Area(s):
End date:

We present an approach for representing fermionic quantum many-body states using tensor networks, by introducing a change of basis with local unitary gates obtained via compressing fermionic Gaussian states into quantum circuits. These fermionic Gaussian circuits enable efficient disentangling of low-energy states and entanglement renormalization in matrix product states/operators, significantly reducing bond dimension and improving computational efficiency. As a demonstration, we apply this approach to the 1D single impurity Anderson model through suppression of entanglement in both ground states and time-evolved low-lying excited states. We also explore the use of hierarchical compression to generate Gaussian multi-scale entanglement renormalization ansatz (GMERA) circuits and study their emergent coarse-grained physical models in terms of entanglement properties and suitability for time evolution.

Zoom link:  https://pitp.zoom.us/j/99677586832?pwd=ZGdIVGpac3pWcnhJYjlkNU16Wmlndz09