Can a quit be your friend? Why experimental metaphysics needs a quantum computer

PIRSA ID: 21040019
Event Type: Seminar
Scientific Area(s):
Quantum Foundations
End date:
Speaker(s):
  • Howard Wiseman, Griffith University

Experimental metaphysics is the study of how empirical results can reveal indisputable facts about the fundamental nature of the world, independent of any theory. It is a field born from Bell’s 1964 theorem, and the experiments it inspired, proving the world cannot be both local and deterministic. However, there is an implicit assumption in Bell’s theorem, that the observed result of any measurement is absolute (it has some value which is not ‘relative to its observer’). This assumption may be called into question when the observer becomes a quantum system (the “Wigner’s Friend” scenario), which has recently been the subject of renewed interest. Here, building on work by Brukner, we derive a theorem, in experimental metaphysics, for this scenario [1]. It is similar to Bell’s 1964 theorem but dispenses with the assumption of determinism. The remaining assumptions, which we collectively call "local friendliness", yield a strictly larger polytope of bipartite correlations than those in Bell's theorem (local determinism), but quantum mechanics still allows correlations outside the local friendliness polytope.  We illustrate this in an experiment in which the friend system is a single photonic qubit [1]. I argue that a truly convincing experiment could be realised if that system were a sufficiently advanced artificial intelligence software running on a very large quantum computer, so that it could be regarded genuinely as a friend. I will briefly discuss the implications of this far-future scenario for various interpretations and modifications of quantum theory.

[1] Kok-Wei Bong, Aníbal Utreras-Alarcón, Farzad Ghafari, Yeong-Cherng Liang, Nora Tischler, Eric G. Cavalcanti, Geoff J. Pryde and Howard M. Wiseman, “A strong no-go theorem on the Wigner’s friend paradox", Nature Physics (2020). 

Zoom Link: https://pitp.zoom.us/j/96715830842?pwd=TFM5SEJGSFBjU0NXQng5K2tGSzVsQT09