Entropic uncertainty relations for quantum-information scrambling

How violently do two quantum operators disagree? Different subfields of physics feature different notions of incompatibility: i) In quantum information theory, uncertainty relations are cast in terms of entropies. These entropic uncertainty relations constrain measurement outcomes. ii) Condensed matter and high-energy physics feature interacting quantum many-body systems, such as spin chains. A local perturbation, such as a Pauli operator on one side of a chain, preads through many-body entanglement.

Jackiw-Teitelboim gravity and the Schwarzian

We derive Schwarzian correlation functions using the BF formulation of Jackiw-Teitelboim gravity, where bilocal operators are interpreted as boundary-anchored Wilson lines in the bulk. Crossing Wilson lines are associated with OTO-correlators and give rise to 6j-symbols. We discuss the semi-classical bulk black hole physics contained within the correlation functions.

Extensions including bulk defects related to the other coadjoint orbits are discussed.

Zeta-regularized vacuum expectation values

Computing vacuum expectation values is paramount in studying Quantum Field Theories (QFTs) since they provide relevant information for comparing the underlying theory with experimental results.

Quantum geometry of moduli spaces of local systems

Let G be a split semi-simple algebraic group over Q. We introduce a natural cluster structure on moduli spaces of G-local systems over surfaces with marked points. As a consequence, the moduli spaces of G-local systems admit natural Poisson structures, and can be further quantized. We will study the principal series representations of such quantum spaces. It will recover many classical topics, such as the q-deformed Toda systems, quantum groups, as well as the modular functor conjecture for such representations, which should lead to new quantum invariants of threefolds.

The world as topological insulator

Over the years, many rich ideas have been exchanged between particle theory and condensed matter theory, such as particle/hole theory, superconductivity and dynamical symmetry breaking, universality and critical phenomena.

A Quantum Multiparty Packing Lemma and the Relay Channel

Optimally encoding classical information in a quantum system is one of the oldest and most fundamental challenges of quantum information theory. Holevo’s bound places a hard upper limit on such encodings, while the Holevo-Schumacher-Westmoreland (HSW) theorem addresses the question of how many classical messages can be “packed” into a given quantum system. In this article, we use Sen’s recent quantum joint typicality results to prove a one-shot multiparty quantum packing lemma generalizing the HSW theorem.