Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Topological factorization homology is an invariant of manifolds which enjoys a hybrid of the structures in topological field theory, and in singular homology. These invariants are especially interesting when we restrict attention to the factorization homology of surfaces, with coefficients in braided tensor categories. In this talk, I would like to explain a technique, related to Beck monadicity, which allows us to compute these abstractly defined categories, as modules for explicitly computable, and in many cases well-known, algebras.
Physically, there's no reason to expect that the A model (as encoded by Gromov-Witten invariants and the Fukaya category) should be related to the theory of cobordisms between D branes. However, it seems that for the A model on convex symplectic targets, the theory of Lagrangian cobordisms detects many invariants of the Fukaya category, and may even recover it--put another way, it seems one can enrich the algebraic structures of the A model as being linear over cobordism spectra.
I will review recent progress on theory of many-body localization, mostly focusing on properties of the many-body localized phase itself.
I will discuss explicit construction of effective Hamiltonians governing the dynamics of conserved quantities. The analysis reveals several inequivalent length scales in the system, some of which do not appear to diverge on the approach to the thermalized phase.
Experimental protocols to measure these length scales will also be discussed.
Numerical results suggest that the quantum Hall effect at {\nu} = 5/2 is described by the Pfaffian or anti-Pfaffian state in the absence of disorder and Landau level mixing. Those states are incompatible with the observed transport properties of GaAs heterostructures, where disorder and Landau level mixing are strong. We show that the recent proposal of a PH-Pfaffian topological order by Son is consistent with all experiments. The absence of the particle-hole symmetry at {\nu} =
In this talk I would like to put forward Wasserstein-geometry as a natural language for Quantum hydrodynamics. Wasserstein-geometry is a formal, infinite dimensional, Riemannian manifold structure on the space of probability measures on a given Riemannian manifold. The basic equations of Quantum hydrodynamics on the other hand are given by the Madelung equations. In terms of Wasserstein-geometry, Madelung equations appear in the shape of Newton's second law of motion, in which the geodesics are disturbed by the influence of a quantum potential. This was pointed out in 2008 by Max. K.
We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure.
We'll explain the slogan of the title: a cluster variety is a space associated to a quiver, and which is built out of algebraic tori.
They appear in a variety of contexts in geometry, representation theory, and physics. We reinterpret the definition as: from a quiver (and some additional choices) one builds an exact symplectic 4-manifold from which the cluster variety is recovered as a component in its moduli space of Lagrangian branes. In particular, structures from cluster algebra govern the classification of exact Lagrangian surfaces in Weinstein 4-manifolds.
100 years after the existence of gravitational waves was first postulated by Albert Einstein, the LIGO and Virgo Collaborations detected gravitational waves for the first time on September 14, 2015. The gravitational waves originated from a pair of black holes that merged over one billion years ago. The merger was so powerful that it shook the very fabric of space and sent a ripple across the Universe that we observed here on Earth at present day.
In quantum theory every state can be diagonalised, i.e. decomposed as a convex combination of perfectly distinguishable pure states. This fact is crucial in quantum statistical mechanics, as it provides the foundation for the notions of majorisation and entropy. A natural question then arises: can we give an operational characterisation of them? We address this question in the framework of general probabilistic theories, presenting a set of axioms that guarantee that every state can be diagonalised: Causality, Purity Preservation, Purification, and Pure Sharpness.
Dark matter can be a thermal relic exponentially lighter than
the weak scale without being exponentially weakly coupled. I will present
three mechanisms to obtain light thermal dark matter with sizable
self-interactions and couplings to the Standard Model.