Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
When we think of a revolution in physics, we usually think of a physical theory that manages to overthrow its predecessor. There is another kind of revolution, however, that typically happens more slowly but that is often the key to achieving the first sort: it is the discovery of a novel perspective on an existing physical theory. The use of least-action principles, symmetry principles, and thermodynamic principles are good historical examples.
Past studies have identified a spatially extended excess of ~1-3 GeV gamma rays from the Galactic Center and inner Galaxy, consistent with the emission expected from annihilating thermal relic dark matter. I will describe recent improvements in the characterization of this signal, which demonstrate that it is spherically symmetric, centered on the Galactic Center, and with a spatial profile consistent with annihilation from a cusped NFW profile.
We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport after a local thermal quench occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.