Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

 

Friday Apr 08, 2016
Speaker(s): 

Light sterile neutrinos are predicted in many theories beyond the Standard Model and may be hinted at in short-baseline data. However cosmological data seems to rule out these neutrinos. Intriguingly, this tension is ameliorated when these new neutrinos are self-interacting. I will explore the impact of this self-interaction on their evolution in the early universe and on the spectrum and flavor of IceCube's ultrahigh energy neutrinos.

Collection/Series: 
Scientific Areas: 

 

Wednesday Apr 06, 2016
Speaker(s): 

Bott periodicity (1956) is a classical and old result in mathematics.

Its easiest incarnation of which concerns Clifford algebras. It says

that, up to Morita equivalence, the real Clifford algebras Cl_1(R),

Cl_2(R), Cl_3(R), etc. repeat with period 8. A similar result holds

for complex Clifford algebras, where the period is now 2. The modern

way of phrasing Bott periodicity in is terms of K-theory: I will

explain how one computes K-theory, and we will see the 8-fold Bott

Collection/Series: 

 

Tuesday Apr 05, 2016

Recent work suggests that a sharp definition of `phase of matter' can be given for some quantum systems out of equilibrium---first for many-body localized systems with time independent Hamiltonians and more recently for periodically driven or Floquet localized systems. We present a new family of driven localized Floquet phases, which are analogues of the 1d symmetry protected topological phases familiar from the equilibrium setting. We then propose a classification for such phases.

Collection/Series: 
Scientific Areas: 

Pages