Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Wednesday Apr 25, 2007

I will survey recent feasibility results on building multi-party cryptographic protocols which manipulate quantum data or are secure against quantum adversaries. The focus will be protocols for secure evaluation of quantum circuits. Along the way, I'll discuss how quantum machines can (and can't) prove knowledge of a secret to a distrustful partner. The talk is based on recent unpublished results, as well as older joint work with subsets of Michael Ben-Or, Claude Crepeau, Daniel Gottesman, and Avinatan Hasidim (STOC '02, FOCS '02, Eurocrypt '05, FOCS '06).

Scientific Areas: 

 

Wednesday Apr 25, 2007
Speaker(s): 

Among the possible explanations for the observed acceleration of the universe, perhaps the boldest is the idea that new gravitational physics might be the culprit. In this colloquium I will discuss some of the challenges of constructing a sensible phenomenological extension of General Relativity, give examples of some candidate models of modified gravity and survey existing observational constraints on this approach.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 24, 2007
Speaker(s): 

Dark matter and dark energy can be explained without resorting to exotic fields if one accepts that the geometry of spacetime is governed by suitable generalized gravitational theories based on Lagrangians that are non-linear in the curvature of a metric and/or a torsionless linear connection, i.e. in second order and first order formalisms.

Collection/Series: 
Scientific Areas: 

Pages