Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Muon spin rotation/relaxation is a powerful technique for studying unconventional superconductors, whose order parameter doesn't have the same symmetry as its host material's crystal structure. I will describe our work on Sr2RuO4, UPt3, CuxBi2Se3 and other topical systems, some of which exhibit broken time reversal symmetry in their superconducting states.
A series of fundamental discoveries over the past thirty years has dramatically improved our ability to read, write, and process magnetically stored information. I will briefly review some of these advances before focusing on the recently discovered and particularly promising spin-orbit torques which act on the collective spin of thin film magnetic conductors when they are placed on a substrate with strong spin-orbit interactions. Spin-orbit torques are normally interpreted in terms of the spin Hall effect, spin-current that flows perpendicular to charge current in any conductor.
The spatially-indirect exciton condensates (SIXC) is an interesting ordered electronic state in which coherence is spontaneously established between particles localized in separate two-dimensional layers. I will discuss some of the properties SIXCs, commenting on their counterflow superfluidity, their collective excitations, and on similarities and differences relative to superconductors, easy-plane ferromagnets and anti-ferromagnets, and the standard model of particle physics.
The standard theory of topological insulators and superfluids (or superconductors) assumes that the fermionic elementary excitations in these systems – electrons in the insulator and Bogoliubov quasiparticles in the superfluid – do not interact with one another. In this talk I will discuss extensions of this theory to include the effects of interparticle interactions on the topological surface states of 3D topological insulators and superfluids.
It is well known - to those who know it - that noise and randomness can enhance signal resolution. I'll present an easy-to-follow example from digital audio that illustrates the way in which adding noise ("dither") prior to measurement enhances the accuracy with which we are able to distinguish the features of the sound or image. I will then explore the way in which the environmental interactions prior to measurement ordinarily characterized as environment-induced decoherence may play a similar role.
Main properties of generalized contraction methods of Lie algebras, known also as expansion methods, are briefly introduced. Between some of their physical applications, one might study the nature of solutions in theories constructed with those expanded algebras. In particular, as we are interested in solutions that could be relevant in the context of AdS/CFT and Holographic Superconductors, we would like to study the holographic QFT dual to Chern-Simons gravity for an expansion of AdS algebra.
Astrophysical observations of the structure of galaxies and clusters are no longer simply proving the existence of DM, but have sharpened into a discovery tool probing the particle physics of dark matter. I discuss small scale structure anomalies for cold dark matter and their possible implications for dark matter physics, such as the existence of forces in the dark sector. New results on cluster scales provide a new important handle for constraining dark matter's particle interactions.
High resolution CMB experiments, such as ACT, SPT, and the Planck satellite are making precision measurements of the secondary anisotropies caused by the thermal Sunyaev Zel'dovich (tSZ) effect from galaxy clusters. However, our ability to obtain cosmological information from this tSZ signal is limited by our theoretical understanding of the baryons in clusters and groups. I will discuss how cross correlation methods are providing new windows into the messy “Gastrophysics” of the intracluster medium and the potential for these methods to constrain various cosmological parameters.
Recent progress on the construction of holographic lattices and its applications to AdS/CMT correspondence will be briefly reviewed. Our special interests will focus on the building of bulk geometry of gravity whose holographic duals exhibit metal-insulator transitions (MIT). In particular, the Peierls phase transition induced by charge density waves is implemented in a holographic manner. The holographic entanglement entropy close to quantum critical points will be discussed as well.