Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The Higgs boson was discovered at the LHC more than two years ago.
So far, the LHC data is consistent with the Standard Model (SM)
predictions. Given its increased rate in the next run of the LHC
with a center-of-mass energy of 14 TeV, double Higgs production will
become an important channel in the search for deviations from the SM
due to new heavy particles. The study of double Higgs production is
also important for understanding the structure of the scalar potential.
The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van derWaals fluids, reentrant phase transitions, and triple points. Both charged and rotating
black holes exhibit novel chemical-type phase behaviour, hitherto unseen.
Via the AdS/CFT correspondence, fundamental constraints on the entanglement structure of quantum systems translate to constraints on spacetime geometries that must be satisfied in any consistent theory of quantum gravity. In this talk, we describe some of the constraints arising from strong subadditivity and from the positivity and monotonicity of relative entropy. Our results may be interpreted as a set of energy conditions restricting the possible form of the stress-energy tensor in consistent theories of Einstein gravity coupled to matter."
We introduce a technique for applying quantum expanders in a distributed fashion, and use it to solve two basic questions: testing whether a bipartite quantum state shared by two parties is the maximally entangled state and disproving a generalized area law. In the process these two questions which appear completely unrelated turn out to be two sides of the same coin. Strikingly in both cases a constant amount of resources are used to verify a global property.