Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Thursday May 12, 2011
Speaker(s): 

In 1964, John Bell proved that independent measurements on entangled quantum states lead to correlations that cannot be reproduced using local hidden variables. The core of his proof is that such distributions violate some logical constraints known as Bell inequalities. This remarkable result establishes the non-locality of quantum physics. Bell's approach is purely qualitative. This naturally leads to the question of quantifying quantum physics' non-locality. We will specifically consider two quantities introduced for this purpose.

Scientific Areas: 

 

Thursday May 12, 2011
Speaker(s): 

We present “guess your neighbor input” (GYNI), a multipartite nonlocal task in which each player must guess the input received by his neighbor. We show that quantum correlations do not perform better than classical ones at this task, for any prior distribution of the inputs. There exist, however, input distributions for which general no-signalling correlations can outperform classical and quantum correlations. Some of the Bell inequalities associated to our construction correspond to facets of the local polytope.

Scientific Areas: 

 

Thursday May 12, 2011
Speaker(s): 

Higher loop amplitudes and non-minimal formalism

Collection/Series: 
Scientific Areas: 

 

Thursday May 12, 2011
Speaker(s): 

According to quantum theory, it is impossible to prepare the state of a system such that the outcome of any projective measurement on the system can be predicted with certainty. This limitation of predictive power, which is known as the uncertainty principle, is one of the main distinguishing properties of quantum theory when compared to classical theories. In this talk, I will discuss the implications of this principle to foundational questions.

Scientific Areas: 

 

Thursday May 12, 2011
Speaker(s): 

Entanglement provides a coherent view of the physical origin of randomness and the growth and decay of correlations, even in macroscopic systems exhibiting few traditional quantum hallmarks. It helps explain why the future is more uncertain than the past, and how correlations can become macroscopic and classical by being redundantly replicated throughout a system's environment. The most private information, exemplified by a quantum eraser experiment, exists only transiently: after the experiment is over no record remains anywhere in the universe of what "happened".

Scientific Areas: 

 

Wednesday May 11, 2011
Speaker(s): 

The quantum mechanical state vector is a complicated object. In particular, the amount of data that must be given in order to specify the state vector (even approximately) increases exponentially with the number of quantum systems. Does this mean that the universe is, in some sense, exponentially complicated? I argue that the answer is yes, if the state vector is a one-to-one description of some part of physical reality. This is the case according to both the Everett and Bohm interpretations.

Collection/Series: 
Scientific Areas: 

 

Wednesday May 11, 2011
Speaker(s): 

Non-contextuality is presented as an abstraction and at the same time generalisation of locality. Rather than in correlations, the underlying physical model leaves its signature in collections of expectation values, which are contrained by inequalities much like Bell's or Tsirelson's inequalities. These non-contextual inequalities reveal a deep connection to classic topics in graph theory, such as independence numbers, Lovasz numbers and other graph parameters.

Scientific Areas: 

 

Wednesday May 11, 2011
Speaker(s): 

Pure spinors, BRST cohomology and tree-level amplitudes

Collection/Series: 
Scientific Areas: 

 

Wednesday May 11, 2011
Speaker(s): 

Three-partite quantum systems exhibit interesting features that are absent in bipartite ones. Several instances are classics by now: the GHZ argument, the W state, the UPB bound entangled states, Svetlichny inequalities... In this talk, I shall discuss some on-going research projects that we are pursuing in my group (in collaboration, or in friendly competition, with other groups) and that involve three-partite entanglement or non-locality: * Activation of non-locality in networks. * Device-independent assessment of the entangling power of a measurement.

Scientific Areas: 

Pages