Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Information theory establishes the fundamental limits on data transmission, storage, and processing. Quantum information theory unites information theoretic ideas with an accurate quantum-mechanical description of reality to give a more accurate and complete theory with new and more powerful possibilities for information processing. The goal of both classical and quantum information theory is to quantify the optimal rates of interconversion of different resources. These rates are usually characterized in terms of entropies.
When the wavefunction of a macroscopic system unitarily evolves from a low-entropy initial state, there is good circumstantial evidence it develops "branches", i.e., a decomposition into orthogonal components that can't be distinguished from the corresponding incoherent mixture by feasible observations, with each component a simultaneous eigenstate of preferred macroscopic observables. Is this decomposition unique? Can the number of branches decrease in time?
In this talk I will review the construction of space starting purely from quantum mechanics and without assuming that the notion of space is attached to a preconceived notion of classical reality. I will show that if one start with the simplest notion of a quantum system encoded into the Heisenberg group algebra one naturally obtain a notion of space that generalizes the usual notion of Euclidean space.
We study the effective twisted superpotential of 3d N=2 gauge theories compactified on a circle. This is a rich object which encodes much of the protected information in these theories. We review its properties, and survey some applications, including the algebra of Wilson loops, computation of supersymmetric partition functions on S^1 bundles, and the reduction of 3d dualities to two dimensions.
We introduce a simple and modern discussion of rotational superradiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning.
Check back for details on the next lecture in Perimeter's Public Lectures Series