Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
We demonstrate that 1+1D conformal symmetry emerges in critical spin chains by constructing a lattice ansatz Hn for (certain combinations of) the Virasoro generators Ln. The generators Hn offer a new way of extracting conformal data from the low energy eigenstates of the lattice Hamiltonian on a finite circle. In particular, for each energy eigenstate, we can now identify which Virasoro tower it belongs to, as well as determine whether it is a Virasoro primary or a descendant (and similarly for global conformal towers and global conformal primaries/descendants).
We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions.
Large parts of condensed matter theoretical physics and quantum chemistry have as a central goal discretizing and solving the continuum many-electron Schrodinger Equation. What do we want to get from these calculations? What are key problems of interest? What sort of approaches are used? I'll start with a broad overview of these questions using the renormalization group as a conceptual framework.
I present three possible non-standard additions to cosmology. First I show that a very long early period of inflation could exist in which parameters evolve, or 'relax', to seemingly fine-tuned values. Next, I show that even if cosmic inflation existed, a period after inflation with anisotropic stress can dramatically affect super-horizon modes and thus the imprint on the cosmic microwave background. Finally, I show that cosmological singularities can be avoided by a bounce without using exotic matter that violates the Null Energy Condition, but by the addition of v
We consider the problem of certifying entanglement and nonlocality in one-dimensional translation-invariant (TI) infinite systems when just averaged near-neighbor correlators are available. Exploiting the triviality of the marginal problem for 1D TI distributions, we arrive at a practical characterization of the near-neighbor density matrices of multi-separable TI quantum states. This allows us, e.g., to identify a family of separable two-qubit states which only admit entangled TI extensions.
The talk will review the computation of the three point function of gauge-invariant operators in the planar N=4 SYM theory using integrability-based methods. The structure constant can be decomposed, as proposed by Basso, Komatsu and Vieira, in terms of two form-factor-like objects (hexagons). The multiple sums and integrals implied by the hexagon decomposition can be performed in the large-charge limit, and be compared to the results obtained by semiclassics. I will discuss a method to perform these sums and the contributions currently accessible by this approach.