Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Monday May 15, 2017
Speaker(s): 

Inflation is the leading paradigm of the early Universe, according to which the tiny temperature fluctuations observed in the cosmic microwave background (CMB) originate from quantum vacuum fluctuations at very early times. Recent observations show that the Starobinsky potential is favored among the single field inflationary models. However, the calculations that match the data exclude the Planck era. I will explain why this era is important and how using techniques from loop quantum gravity, the effects of this period can be studied.

Collection/Series: 
Scientific Areas: 

 

Monday May 15, 2017
Speaker(s): 

The notion of singular support for coherent sheaves was introduced by Arinkin and Gaitsgory in order to carefully state the geometric Langlands conjecture.  This is a conjectural equivalence of categories of sheaves on certain moduli spaces: in order to make the conjecture reasonable one needs to restrict to sheaves which satisfy a certain "singular support condition".  In this talk I'll explain how to think about this singular support condition from the point of view of boundary conditions in twisted N=4 gauge theory.  Specifically, Arinkin and Gaitsgory's singular su

Collection/Series: 
Scientific Areas: 

 

Monday May 15, 2017
Speaker(s): 

Any quantum field theory can be thought of as arising from a perturbed UV conformal field theory, suggesting that information about the full RG flow is encoded in the original CFT. I will discuss ongoing work developing new methods for extracting this information to study strongly-coupled IR dynamics. This method uses a UV basis of conformal Casimir eigenstates to construct the Hamiltonian, which is then truncated at some maximum Casimir eigenvalue and diagonalized to approximate the low energy spectrum of the IR theory.

Collection/Series: 
Scientific Areas: 

 

Monday May 15, 2017
Speaker(s): 

Relationalism is the strict disentanglement of physical law from the definition of physical object. This can be formalized in the shape dynamcis postulate that the objective evolution of the universe is described by an "equation of state of a curve in relational configuration space." The application of this postulate to General Relativity implies that gravity is described by an equation of state of a curve on conformal superspace. It turns out that the naive quantization of these equations of state introduces an undesired preferred time parametrization.

Collection/Series: 
Scientific Areas: 

 

Monday May 15, 2017
Speaker(s): 

Shape Dynamics(SD) can be derived from principles that differ in significant respects from Einstein's derivation of GR. It requires a spatially closed universe and allows a smaller set of solutions than GR does for this case. There are indications that its solution space can be fully characterized and endowed with a measure. These architectonic features suggest that SD can explain the arrows of time as direct consequences of the law of the universe. They do not require special initial conditions. I will discuss these and other major issues on which SD may cast light.

Collection/Series: 
Scientific Areas: 

 

Thursday May 11, 2017
Speaker(s): 

I will discuss the role(s) of the Immirzi parameter in Loop Quantum Gravity, insisting on the Poisson algebra formed by Thiemann's complexifier, the volume and the Hamiltonian constraint. In particular, we will see how loop quantum cosmology is a direct quantization of this CVH Poisson algebra and how cosmological evolution amounts to a flow in the Immirzi parameter.

Collection/Series: 
Scientific Areas: 

 

Thursday May 11, 2017
Speaker(s): 

I will first show that a number of persistent astrophysical puzzles, including missing pulsars in the galactic center, fast radio bursts, the abundance of r-process elements, and the type Ia supernova progenitor problem, may all be an emerging signature of dark matter. I will address some theoretical implications and new astrophysical phenomena -- for example "quiet kilonovae" and "r-process donuts" -- associated with this dark matter.

Collection/Series: 

Pages