Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In quantum gravity, observables must be diffeomorphism-invariant. Such observables are nonlocal, in contrast with the standard assumption of locality in flat spacetime quantum field theory. I will show how to construct 'gravitationally dressed' observables in linearized gravity that become local in the weak gravity limit, and whose corrections to exact locality are characterized by the Newtonian potential. One can attempt to make these observables more local by concentrating gravitational field lines into a smaller solid angle.
The concept of symmetry breaking and the emergence of corresponding
local order parameters
constitute the pillars of modern day many body physics. I will
demonstrate that the existence of
symmetry breaking is a consequence of the geometric structure of the
convex set of reduced density
matrices of all possible many body wavefunctions. The surfaces of these
convex bodies exhibit
certain features, which signal the emergence of symmetry breaking and of
an associated order
parameter.
Some 5d gauge theories have a 6d N=(1,0) SCFT as their UV completion. Given such 5d gauge theory we desire to determine its 6d UV completion. In this talk, I will present a method to do this for 5d gauge theories that can be engineered in string theory by brane webs. This can then be applied to study compactification of 6d N=(1,0) SCFT's on a torus.
Check back for details on the next lecture in Perimeter's Public Lectures Series