This series consists of talks in areas where gravity is the main driver behind interesting or peculiar phenomena, from astrophysics to gravity in higher dimensions.
There is now a consensus that gamma-ray bursts involve
extraordinary power outputs, and highly relativistic dynamics.
The trigger is probably a binary merger or collapse involving
compact objects. The most plausible progenitors, ranging from
NS-NS mergers to various hypernova-like scenarios, eventually
lead to the formation of a black hole with a debris torus around it.
The various modes of energy extraction from such systems are discussed.
Today there is robust observational evidence of dark and compact objects in X-ray binary systems with a mass of 5-20 $M_\odot$ and in galactic nuclei with a mass of $10^5 - 10^9$ $M_\odot$. The conjecture is that all these objects are the Kerr black holes predicted by General Relativity, as they cannot be explained otherwise without introducing new physics. However, there are no directs observational evidences. In this talk, I discuss how the Kerr black hole hypothesis can be tested with present and future X-ray data and the current constraints on the nature of this objects.
TBA
TeV-scale models of quantum gravity predict the formation of mini black holes at the Large Hadron Collider. If these black holes can be treated, at least for part of their evolution, as semi-classical objects, they will emit Hawking radiation. In this talk we review the modeling of this evaporation process, particularly for the case when the black hole is rotating. A detailed understanding of the Hawking radiation is necessary for accurate simulations of black hole events at the LHC.
Cross-correlation of gravitational-wave (GW) data streams has been used to search for stochastic backgrounds, and the same technique was applied to look for periodic GWs from the low-mass X-ray binary (LMXB) Sco X-1. Recently a technique was developed which refines the cross-correlation scheme to take full advantage of the signal model for periodic gravitational waves from rotating neutron stars. By varying the time window over which data streams are correlated, the search can "trade off" between parameter sensitivity and computational cost.
Various self-similar spherically symmetric spacetimes admit naked singularities, providing a challenge to the cosmic censorship hypothesis. However, it is not clear if the naked singularities are artefacts of the high degree of symmetry of the spacetimes, or if they are potentially generically present. To address this question, we consider perturbations of (various cases of) these spacetimes, focusing particularly on the behaviour of the perturbations as they impinge on the Cauchy horizon.
The effective field theory framework yields a systematic treatment of gravitational bound states such as binary systems. Gravitational waves emitted from compact binaries are one of the prime event candidates at direct detection experiments. Due to the multiple scales involved in the binary problem, an effective field theory treatment yields many advantages in perturbative calculations. My talk will review the setup of the effective field theory framework and report on recent progress in gravitational wave phenomenology.
The local and global properties of the retarded and Feynman Green functions to the wave equation in curved spacetime are crucial for radiation reaction in the classical theory and for renormalisation in the quantum quantum theory. Building on an insight due to Avramidi, we provide a system of transport equations for determining key fundamental geometrical bitensors determining the local Hadamard singularity structure of these GreenÃ¢ÂÂs functions.
The upcoming launch of the space-based gravitational wave interferometer detector LISA will yield an unprecedented amount of astrophysical and cosmological science from a variety of gravitational wave sources. Among these, the extreme mass ratio inspirals (EMRIs) of stellar-mass compact objects into supermassive black holes will provide a unique opportunity to test the predictions of General Relativity for strongly gravitating systems since the masses and spins of these sources are expected to be measured with precisions better than about 1 part in 10^4.
Assuming exotic matter, several models representing static, spherically symmetric wormhole solutions of Einstein's field equations have been considered in the literature. We examine the dynamical stability of such wormholes in one of the simplest model, in which the matter is described by a massless ghost scalar field, and prove that all solutions are unstable with respect to linear fluctuations and possess precisely one unstable, exponentially in time growing mode.