Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In 2014 Hartnoll proposed that the diffusion constants of incoherent metals should be bounded as $ D \geq \hbar v^2/ (k_B T)$, where v is a characteristic velocity. In this talk I will describe a large class of holographic theories that saturate such a bound, with $v$ being the velocity of the butterfly effect. Our results suggest a novel connection between transport at strong coupling and the field of quantum chaos.
Non-relativistic geometries that violate hyperscaling have been used as holographic laboratories for probing strongly coupled phases with anomalous scalings. In this talk I will discuss holographic computations of DC conductivities in gravitational systems that exhibit such scalings, and allow for momentum dissipation. I will also comment on the cases in which one obtains a linear temperature dependence for the resistivity.
This talk, based on work with Brian Swingle, will describe the s-sourcery program.
Its goal is to extend the lessons of the renormalization group to quantum many body states.
Ultracold atomic Fermi gases near Feshbach resonances or in optical lattices realize paradigmatic, strongly interacting forms of fermionic matter. Topological excitations and spin-charge correlations can be directly imaged in real time. In resonant fermionic superfluids, we observe the cascade of solitonic excitations following a pi phase imprint. A planar soliton decays, via the snake instability, into vortex rings and long-lived solitonic vortices.
Check back for details on the next lecture in Perimeter's Public Lectures Series