```
1
00:00:00,158 --> 00:00:02,741
(upbeat music)
2
00:00:08,900 --> 00:00:10,220
- Hi, everyone, and thanks
3
00:00:10,220 --> 00:00:13,420
for coming back to
Conversations at the Perimeter.
4
00:00:13,420 --> 00:00:17,090
Today, we're bringing you a
conversation with Estelle Inack.
5
00:00:17,090 --> 00:00:19,870
She's a research scientist
here at Perimeter,
6
00:00:19,870 --> 00:00:23,350
and she's also the Co-Founder
and Chief Technology Officer
7
00:00:23,350 --> 00:00:25,340
of the company yiyaniQ.
8
00:00:25,340 --> 00:00:27,810
- I love this conversation with Estelle,
9
00:00:27,810 --> 00:00:30,240
partly because I found
it a little challenging,
10
00:00:30,240 --> 00:00:33,247
the terminology like
artificial intelligence
11
00:00:33,247 --> 00:00:35,890
and machine learning and neural networks.
```

```
12
00:00:35,890 --> 00:00:39,180
These are terms that I've come
across before in our work,
13
00:00:39,180 --> 00:00:41,880
but they get thrown around
a lot in popular culture.
14
00:00:41,880 --> 00:00:44,420
And it was great to hear
from an expert who's working,
15
00:00:44,420 --> 00:00:45,480
not just in these fields,
16
00:00:45,480 --> 00:00:49,070
but really finding the
intersections between these fields.
17
00:00:49,070 --> 00:00:51,690
She was a very generous
tour guide with us.
18
00:00:51,690 --> 00:00:53,670
- I agree, and I really also loved hearing
1 9
00:00:53,670 --> 00:00:56,150
about how her work is
really at the intersection
20
00:00:56,150 --> 00:00:58,900
of quantum science and
artificial intelligence,
21
00:00:58,900 --> 00:01:01,890
but also at the intersection
of academic research
22
00:01:01,890 --> 00:01:03,630
```

```
and industry applications.
23
00:01:03,630 --> 00:01:06,240
- And her personal story
is pretty amazing too.
24
00:01:06,240 --> 00:01:09,700
You know, she's a scientist
who's now working in a startup.
25
00:01:09,700 --> 00:01:11,980
She's trying to learn the business world.
26
00:01:11,980 --> 00:01:14,990
Estelle just has a fascinating
personal story as well.
2 7
00:01:14,990 --> 00:01:17,250
She's originally from Cameroon,
28
00:01:17,250 --> 00:01:19,920
and she originally wanted to do something
29
00:01:19,920 --> 00:01:21,440
completely different than physics.
30
00:01:21,440 --> 00:01:22,760
We won't give any spoilers,
31
00:01:22,760 --> 00:01:25,870
but her journey into physics
was really fascinating,
32
00:01:25,870 --> 00:01:28,730
especially because she faced
quite a lot of obstacles
33
00:01:28,730 --> 00:01:31,160
in her native Africa to
```

```
becoming a physicist.
34
00:01:31,160 --> 00:01:33,620
And we learned that she's
actually gone back to Africa
35
00:01:33,620 --> 00:01:37,000
to try to help inspire other
women scientists there.
36
00:01:37,000 --> 00:01:39,360
- We're excited for you
to hear the conversation.
3 7
00:01:39,360 --> 00:01:42,614
Let's step inside the
Perimeter with Estelle Inack.
38
00:01:42,614 --> 00:01:45,530
(upbeat music)
39
00:01:45,530 --> 00:01:46,690
Okay. Hi, Estelle.
4 0
00:01:46,690 --> 00:01:49,500
Thanks so much for sitting
down with us today.
4 1
00:01:49,500 --> 00:01:51,407
- Thanks for the invitation.
4 2
00:01:51,407 --> 00:01:52,240
- It's great to have you here.
4 3
00:01:52,240 --> 00:01:53,290
- It's my pleasure.
4 4
00:01:53,290 --> 00:01:56,070
- So you work in a really exciting field
```

```
4 5
00:01:56,070 --> 00:01:59,240
that's also pretty new or
at least rapidly growing,
4 6
00:01:59,240 --> 00:02:02,080
that is often called quantum intelligence.
4 7
00:02:02,080 --> 00:02:03,400
Can you tell us a little bit
4 8
00:02:03,400 --> 00:02:06,873
about what draws you to this
field and why it's so exciting?
4 9
00:02:08,180 --> 00:02:10,980
- So it's basically a very fancy name
5 0
00:02:10,980 --> 00:02:13,190
that means a lot of different things,
5 1
00:02:13,190 --> 00:02:16,370
depending on how you take
different combinations
52
00:02:16,370 --> 00:02:18,730
of artificial intelligence
and quantum computing.
5 3
00:02:18,730 --> 00:02:20,870
So for example, for some people
54
00:02:20,870 --> 00:02:24,090
it might mean using quantum computers
5 5
00:02:24,090 --> 00:02:26,873
to perform artificial intelligence tasks,
5 6
```

```
00:02:26,873 --> 00:02:28,880
in the field that they call
quantum machine learning.
5 7
00:02:28,880 --> 00:02:32,570
For other people, it could
mean using quantum computers
5 8
00:02:32,570 --> 00:02:35,570
with artificial intelligence
for quantum control,
5 9
00:02:35,570 --> 00:02:37,250
for example,for quantum state preparation.
6 0
00:02:37,250 --> 00:02:38,860
For other people, it can mean
6 1
00:02:38,860 --> 00:02:40,310
using machine learning techniques
6 2
00:02:40,310 --> 00:02:43,100
that you borrow from AI research
6 3
00:02:43,100 --> 00:02:46,560
to basically probe the behavior
of quantum many-body system.
6 4
00:02:46,560 --> 00:02:49,910
And this is more of the
field where I am now,
6 5
00:02:49,910 --> 00:02:51,670
borrowing machine learning techniques
6 6
00:02:51,670 --> 00:02:54,130
to probe the behavior of
quantum many-body systems.
6 7
```

```
00:02:54,130 --> 00:02:55,550
- You mentioned a few terms there
6 8
00:02:55,550 --> 00:02:57,460
that I'm hoping you
can elaborate on a bit.
6 9
00:02:57,460 --> 00:02:59,900
A lot of people have heard the
term artificial intelligence.
70
00:02:59,900 --> 00:03:01,390
It's very much in the news.
71
00:03:01,390 --> 00:03:02,223
I think a lot of people
72
00:03:02,223 --> 00:03:04,070
have heard the term quantum computing,
7 3
00:03:04,070 --> 00:03:07,050
maybe a little bit less so
in the public consciousness.
74
00:03:07,050 --> 00:03:08,770
Can you tell us what those are
75
00:03:08,770 --> 00:03:12,050
and how you're sort of
bridging the two fields?
76
00:03:12,050 --> 00:03:14,980
- Yes, so there are so many
different ways, as I mentioned,
7 7
00:03:14,980 --> 00:03:16,990
and different ways of
bridging the two phase.
78
```

```
00:03:16,990 --> 00:03:18,960
So quantum computers, for example,
7 9
00:03:18,960 --> 00:03:22,750
is just a different way of
computing, a different paradigm.
80
00:03:22,750 --> 00:03:26,880
It's using some of the
properties of quantum physics
81
00:03:26,880 --> 00:03:29,150
to hopefully speed up some calculations
82
00:03:29,150 --> 00:03:31,374
that are currently intractable
83
00:03:31,374 --> 00:03:34,060
on the current class of
computers that we have.
84
00:03:34,060 --> 00:03:36,010
Some people used to call that
85
00:03:36,010 --> 00:03:37,710
like the second quantum wave revolution,
86
00:03:37,710 --> 00:03:40,180
because already with the
current computers that we have,
87
00:03:40,180 --> 00:03:42,900
we already use quantum
mechanics, transistors.
88
00:03:42,900 --> 00:03:45,420
But now we want to use, to leverage
89
00:03:45,420 --> 00:03:47,700
```

```
other properties of quantum system,
90
00:03:47,700 --> 00:03:51,630
either entanglement,
superposition, quantum tunneling,
91
00:03:51,630 --> 00:03:54,250
to yeah, have some speed
up on some algorithm
92
00:03:54,250 --> 00:03:55,780
like Shor's algorithm, for example.
93
00:03:55,780 --> 00:03:58,290
So it's a totally
different kind of paradigm.
94
00:03:58,290 --> 00:04:02,800
Now a artificial intelligence
is in general, basically
95
00:04:02,800 --> 00:04:06,140
thinking about having an
intelligence that is not human
96
00:04:06,140 --> 00:04:09,330
that is able to perform human-like tasks.
97
00:04:09,330 --> 00:04:12,566
Right, and under it, you can
actually write some algorithms
98
00:04:12,566 --> 00:04:13,620
that we do that.
99
00:04:13,620 --> 00:04:15,010
You have machine learning
100
00:04:15,010 --> 00:04:17,300
```

```
and you can have neural networks,
101
00:04:17,300 --> 00:04:20,290
that kind of generally people think of it
102
00:04:20,290 --> 00:04:22,070
like representation of the brain,
103
00:04:22,070 --> 00:04:23,810
even though sometimes it's not like that.
104
00:04:23,810 --> 00:04:25,510
Even though it's remarkable to see
105
00:04:25,510 --> 00:04:28,030
that some of the intuition behind things
106
00:04:28,030 --> 00:04:29,797
like conversational knowledge works is
107
00:04:29,797 --> 00:04:33,670
basically how we see, to
basically come with the design
108
00:04:33,670 --> 00:04:36,440
of that kind of deep
neural networks, basically,
109
00:04:36,440 --> 00:04:39,850
to be able to do image
recognition, for example.
110
00:04:39,850 --> 00:04:42,500
So that's basically two
different communities
111
00:04:42,500 --> 00:04:45,780
and a lot of sub-fields
within those communities.
```

112
00:04:45,780 --> 00:04:47,340
And now within the sub-fields,
113
00:04:47,340 --> 00:04:50,210
yeah, you can find some correlations.
114
00:04:50,210 --> 00:04:52,510
I will tell you, for example, one of the correlation

115
00:04:52,510 --> 00:04:55,370
that I'm mostly familiar
with in simulating
116
00:04:55,370 --> 00:04:56,930
quantum many-body systems
117
00:04:56,930 --> 00:05:00,200
on what we call classical
architectures like your laptop
118
00:05:00,200 --> 00:05:02,560
or whatever cluster we are using here at Perimeter, right?

119
00:05:02,560 --> 00:05:05,560
So for us to be able to simulate quantum many-body systems

120
00:05:05,560 --> 00:05:07,270
are different methods.
121
00:05:07,270 --> 00:05:10,420
One of the popular methods is a quantum Monte Carlo method

122
00:05:10,420 --> 00:05:12,570
called variational Monte Carlo.

123
00:05:12,570 --> 00:05:15,550
To use that, you need to be able to have
124

00:05:15,550 --> 00:05:19,040
what is called an ansatz, which is just a good guess

```
125
```

00:05:19,040 --> 00:05:21,820
of what the ground state wave function

126

00:05:21,820 --> 00:05:24,480
of your quantum many-body system is.
127
00:05:24,480 --> 00:05:27,810
But to have this good guess, you need to understand

128
00:05:27,810 --> 00:05:30,980
the Hamiltonian or the physics of the problem at hand.

129
00:05:30,980 --> 00:05:32,060
Is it fermions?
130
00:05:32,060 --> 00:05:33,290
Is it bosons, right?
131
00:05:33,290 --> 00:05:35,600
What are the interaction strength?
132
00:05:35,600 --> 00:05:37,500
What is the Hilbert space?
133
00:05:37,500 --> 00:05:39,370
Is it a Fock space, right?
134
00:05:39,370 --> 00:05:42,240

And based on that, on the symmetries of the system,

135
00:05:42,240 --> 00:05:44,820
you come up with a good ansatz.
136
00:05:44,820 --> 00:05:46,140
Now, not everybody can do that, right?
137
00:05:46,140 --> 00:05:48,500
We really need very specialized knowledge.
138
00:05:48,500 --> 00:05:50,403
And the moment you
perturb the Hamiltonian,
139
00:05:50,403 --> 00:05:52,380
that you go to another Hamiltonian,
140
00:05:52,380 --> 00:05:53,960
maybe it's totally out of your field.
141
00:05:53,960 --> 00:05:56,120
If you leave fermions and go to bosons,
142
00:05:56,120 --> 00:05:58,060
you don't get the intuition anymore.
143
00:05:58,060 --> 00:06:00,180
So the idea of neural networks,
144
00:06:00,180 --> 00:06:02,570
that is borrowing like some
knowledge from neural networks.
145
00:06:02,570 --> 00:06:04,500
Since there are universal approximators,

```
00:06:04,500 --> 00:06:07,300
and hopefully they should
be able to represent
147
00:06:07,300 --> 00:06:08,510
any kind of function,
148
00:06:08,510 --> 00:06:10,590
then why not representing then
149
00:06:10,590 --> 00:06:13,220
the ground state wave function
of a many-body system.
150
00:06:13,220 --> 00:06:15,640
That was the original idea of borrowing
151
00:06:15,640 --> 00:06:17,350
this kind of neural network,
152
00:06:17,350 --> 00:06:20,050
basically perform quantum
many-body simulations.
153
00:06:20,050 --> 00:06:23,040
And even though nowadays
we see that we still need
154
00:06:23,040 --> 00:06:27,770
a little bit of quantum intuition
to make it work perfectly,
155
00:06:27,770 --> 00:06:30,680
like you need knowledge of
symmetries, for example,
156
00:06:30,680 --> 00:06:32,370
we encode it in a neural network
157
```

```
00:06:32,370 --> 00:06:35,970
to make it represent your
system in a much better way.
158
00:06:35,970 --> 00:06:37,300
But yeah, so the story is
1 5 9
00:06:37,300 --> 00:06:40,670
that, yeah, we saw how it
was working amazingly well
160
00:06:40,670 --> 00:06:41,780
in machine learning.
161
00:06:41,780 --> 00:06:44,700
And it is also starting
to work quite well.
162
00:06:45,890 --> 00:06:47,530
- You and I, Estelle, we actually work
163
00:06:47,530 --> 00:06:49,120
in similar research areas.
164
00:06:49,120 --> 00:06:50,880
You kind of said already, we're both part
165
00:06:50,880 --> 00:06:53,590
of this Perimeter Institute
Quantum Intelligence Lab.
166
00:06:53,590 --> 00:06:55,670
We have our matching hoodies today.
167
00:06:55,670 --> 00:06:57,460
- Green hoodies.
168
00:06:57,460 --> 00:07:00,107
That's because the acronym
```

for that institute is

169
00:07:00,107 --> 00:07:01,430

- Is PIQuILs.
- PIQuILs.

170
00:07:01,430 --> 00:07:02,960

- They have to be, everything's green

171
00:07:02,960 --> 00:07:05,217
at the PIQuIL.

- PIQuIL.

172
00:07:05,217 --> 00:07:06,050

- Yes.
(all laughing)
173
00:07:06,050 --> 00:07:08,030
- And I think something
that's pretty unique
174
00:07:08,030 --> 00:07:09,850
about this group, at least compared
175
00:07:09,850 --> 00:07:11,950
to maybe other research
groups at Perimeter is
176
00:07:11,950 --> 00:07:14,640
that there tends to be
a lot of opportunities
177
00:07:14,640 --> 00:07:16,850
for collaborations with industry.
178
00:07:16,850 --> 00:07:18,450
So can you talk a little bit about that?
179
00:07:18,450 --> 00:07:21,030

And what maybe could be unique
180
00:07:21,030 --> 00:07:23,190
or what's important about these academic
181
00:07:23,190 --> 00:07:25,650
and industry collaboration?
182
00:07:25,650 --> 00:07:28,740

- Definitively. What is unique
first of all is the field.
183
00:07:28,740 --> 00:07:30,150
The field, as I mentioned,
184
00:07:30,150 --> 00:07:33,600 we are using a lot of state of machine learning techniques,

185
00:07:33,600 --> 00:07:36,560 which we know industry use a lot.

186
00:07:36,560 --> 00:07:39,210
Facebook, Google, they
have huge research groups
187
00:07:39,210 --> 00:07:40,750
that publish a lot of papers.
188
00:07:40,750 --> 00:07:45,360
So already in that sense, we, just by using those tools,

189
00:07:45,360 --> 00:07:49,750
we are already somehow in between industry research

190
00:07:49,750 --> 00:07:51,810 and academia research.

191
00:07:51,810 --> 00:07:54,150

- Are those classical machine learning techniques?

192
00:07:54,150 --> 00:07:56,390

- Those are classical machine learnings.

193
00:07:56,390 --> 00:08:00,280
Even though now a lot
of those big companies
194
00:08:00,280 --> 00:08:02,370
are having quantum groups as well,
195
00:08:02,370 --> 00:08:03,830
and they are developing
196
00:08:03,830 --> 00:08:05,790
quantum machine learning
techniques as well,
197
00:08:05,790 --> 00:08:07,470
and a lot of startups as well.
198
00:08:07,470 --> 00:08:11,590
So the field of quantum computing
is being pushed forward,
199
00:08:11,590 --> 00:08:15,240
both by academia and industry.
200
00:08:15,240 --> 00:08:20,030
And the PIQuIL is trying to
bridge, I mean, those two worlds
201
00:08:20,030 --> 00:08:21,620
and to provide a platform

202
00:08:21,620 --> 00:08:25,660
where academia can talk to industry and vice versa,

203
00:08:25,660 --> 00:08:27,500
and together working on the projects
204
00:08:27,500 --> 00:08:30,593
we can speed with which we advance things.
205
00:08:31,570 --> 00:08:34,250

- I often think of it like an
area with many bridges, right?
206
00:08:34,250 --> 00:08:36,730
Because you're trying to bridge academia and industry,

207
00:08:36,730 --> 00:08:39,810
but also quantum with machine learning.
208
00:08:39,810 --> 00:08:40,643

- Exactly.

209
00:08:40,643 --> 00:08:42,570

- Lots of different bridges you have to go over.

210
00:08:42,570 --> 00:08:44,460

- Exactly, exactly. And one interesting thing

211
00:08:44,460 --> 00:08:48,340
that has come up in the last few years
212
00:08:48,340 --> 00:08:50,550
is physicists are thinking
213

```
00:08:50,550 --> 00:08:54,500
of actually importing some of the methods
214
00:08:55,360 --> 00:08:57,560
that we have been using to quantum matter
215
00:08:57,560 --> 00:08:58,800
to the machine learning community.
216
00:08:58,800 --> 00:09:00,253
I think of tensor networkss, for example.
217
00:09:00,253 --> 00:09:02,730
They're like, oh, we have
a very good understanding
218
00:09:02,730 --> 00:09:03,986
on these tensor networks.
219
00:09:03,986 --> 00:09:06,260
We can interpret them
220
00:09:06,260 --> 00:09:07,790
instead of using your black boxes.
221
00:09:07,790 --> 00:09:09,910
So maybe you could use that
222
00:09:09,910 --> 00:09:11,900
for, I don't know, image recognition.
223
00:09:11,900 --> 00:09:15,160
And people have been doing
that and it's working.
224
00:09:15,160 --> 00:09:17,910
So it is also a way for
the physics community
```

```
2 2 5
00:09:17,910 --> 00:09:21,317
to somehow give back to the AI community.
226
00:09:22,190 --> 00:09:24,650
- You mentioned that what
brought you to Perimeter
227
00:09:24,650 --> 00:09:27,453
in the first place was
looking at Roger Melko's work.
228
00:09:27,453 --> 00:09:29,710
And now Roger is, he's the head of PIQuIL,
229
00:09:29,710 --> 00:09:32,090
the quantum intelligence lab.
2 3 0
00:09:32,090 --> 00:09:35,540
Can you just give us a sense
of what it's like at PIQuIL?
231
00:09:35,540 --> 00:09:38,569
What is a day like at the PIQuIL?
2 3 2
00:09:38,569 --> 00:09:40,170
What are the sort of
questions and problems
233
00:09:40,170 --> 00:09:41,620
that are being tackled there?
234
00:09:42,570 --> 00:09:45,870
- PIQuIL is really like a
startup like kind of environment.
235
00:09:45,870 --> 00:09:48,233
Even though there's
industry and academia there,
```

236
00:09:48,233 --> 00:09:51,360
there's a lot of free discussions.
237
00:09:51,360 --> 00:09:52,580
We have journal clubs.
238
00:09:52,580 --> 00:09:54,170
It was virtual during COVID.
239
00:09:54,170 --> 00:09:56,490
Now we are starting to come back person.
240
00:09:56,490 --> 00:10:00,210
A lot of discussions about
Slack, "Oh, this is a new paper.
241
00:10:00,210 --> 00:10:01,577
What do you think of?
242
00:10:01,577 --> 00:10:03,450
Oh, I have a problem in my research.
243
00:10:03,450 --> 00:10:05,230
Do you have a solution for
that" and things like that.
244
00:10:05,230 --> 00:10:06,833
So really a lot of interaction.
245
00:10:07,940 --> 00:10:10,030

- And so you first came here to Perimeter

246
00:10:10,030 --> 00:10:12,560
maybe to pursue more the
academic side of things,
247
00:10:12,560 --> 00:10:13,970
but as time has gone on,

```
248
00:10:13,970 --> 00:10:16,370
you've become more and more
involved with industry.
249
00:10:16,370 --> 00:10:18,740
And now you're actually the Co-Founder
250
00:10:18,740 --> 00:10:20,650
and the Chief Technology Officer
251
00:10:20,650 --> 00:10:23,520
of a company called yiyaniQ.
252
00:10:23,520 --> 00:10:25,840
Can you tell us a little
bit about your company
253
00:10:25,840 --> 00:10:28,040
and what it's trying to do?
254
00:10:28,040 --> 00:10:32,020
- Definitely, maybe I will take
a step back by a little bit.
255
00:10:32,020 --> 00:10:34,330
I was doing my PhD and then
I was doing my post doc.
256
00:10:34,330 --> 00:10:37,560
So I was mostly focused on academic work.
257
00:10:37,560 --> 00:10:39,760
But even though I was focused on that,
258
00:10:39,760 --> 00:10:44,110
my specialty is developing
algorithms to solve optimization
```

259
00:10:44,110 --> 00:10:47,280 beside probing the behavior of quantum many-body system, 260
00:10:47,280 --> 00:10:50,720 but optimization points that are like real-world problems.

261
00:10:50,720 --> 00:10:53,040
But typically the way we solve it is okay.
262
00:10:53,040 --> 00:10:55,983 Like physicists, we like to have like a very easy model

263
00:10:55,983 --> 00:10:58,130
that we can benchmark and things like that.

264
00:10:58,130 --> 00:10:59,440
That is not really reality.
265
00:10:59,440 --> 00:11:02,610
It is not gonna affect
the life of somebody.
266
00:11:02,610 --> 00:11:06,504
And so I always had behind my mind, in the back of my mind

267
00:11:06,504 --> 00:11:10,940
that these algorithms, we
could actually try to use them
268
00:11:10,940 --> 00:11:13,180
to solve real-world
problems, not just write it
269
00:11:13,180 --> 00:11:15,270

```
at the end of the
conclusions of our papers.
270
00:11:15,270 --> 00:11:17,940
And, oh, you can use it
to solve a real-world.
271
00:11:17,940 --> 00:11:19,810
So I had that in back of my mind.
272
00:11:19,810 --> 00:11:23,370
And yeah, so last, I
think one year and a half,
273
00:11:23,370 --> 00:11:28,090
we had these very nice results
of an algorithm we designed.
274
00:11:28,090 --> 00:11:31,610
And we decided to basically
file a patent away.
275
00:11:31,610 --> 00:11:34,140
And that was the moment I was like, okay,
276
00:11:34,140 --> 00:11:35,810
now we need to try to commercialize it
277
00:11:35,810 --> 00:11:39,080
and see whether we can
have real-world impact.
278
00:11:39,080 --> 00:11:41,040
And we created yiyaniQ.
279
00:11:41,040 --> 00:11:44,520
So the company right now
is focusing on designing
280
```

```
00:11:44,520 --> 00:11:46,860
what we call quantum intelligent algorithm
281
00:11:46,860 --> 00:11:49,190
to basically speed up derivative pricing,
282
00:11:49,190 --> 00:11:53,330
which is a specific problem
in quantitative finance,
283
00:11:53,330 --> 00:11:55,480
in the sales side of financial market.
284
00:11:55,480 --> 00:11:57,270
In the beginning, I
was very much confused.
285
00:11:57,270 --> 00:12:00,160
I had a hammer, I didn't
know where I'd find the nail.
286
00:12:00,160 --> 00:12:04,170
So there are so many different
optimization point out there.
287
00:12:04,170 --> 00:12:05,750
Some are very interesting.
288
00:12:05,750 --> 00:12:06,840
Some are very challenging.
289
00:12:06,840 --> 00:12:08,080
Others are boring.
290
00:12:08,080 --> 00:12:11,180
I really needed to find one
that was challenging enough,
291
00:12:11,180 --> 00:12:13,770
```

```
but I found that very fast
that, yeah, you need somebody
292
00:12:13,770 --> 00:12:16,600
who has expertise to
be able to design that.
293
00:12:16,600 --> 00:12:19,360
And I met him in an incubator
294
00:12:19,360 --> 00:12:22,443
called Creative Disruption
Lab, Behnam Javanparast.
295
00:12:23,288 --> 00:12:25,570
And he has a PhD in theoretical physics,
296
00:12:25,570 --> 00:12:26,470
in condensed matter as well.
297
00:12:26,470 --> 00:12:27,930
So we could talk to each other,
298
00:12:27,930 --> 00:12:30,540
but he also worked in a bank
for more than seven years.
299
00:12:30,540 --> 00:12:32,920
So it was quite very easy for us
300
00:12:32,920 --> 00:12:36,093
to kind bring our
perspectives to found yiyaniQ.
301
00:12:37,874 --> 00:12:39,110
- I'm hoping you can tell us a bit more
302
00:12:39,110 --> 00:12:41,430
about optimization problems generally.
```

303
00:12:41,430 --> 00:12:43,700
Could you tell what the term means
304
00:12:43,700 --> 00:12:46,753
and how you apply your techniques to it?
305
00:12:47,820 --> 00:12:49,800

- Usually for us physicists,

306
00:12:49,800 --> 00:12:54,270
it is useful for us to
kind of map a problem
307
00:12:54,270 --> 00:12:58,600
into a configuration
that we understand best.
308
00:12:58,600 --> 00:13:01,290
And one sweet thing is that we can view
309
00:13:01,290 --> 00:13:04,580
optimization problems as a search problem
310
00:13:04,580 --> 00:13:06,730
in a very complex landscape,
311
00:13:06,730 --> 00:13:07,897
where in an optimization problem,
312
00:13:07,897 --> 00:13:11,700 typically you have a function you want to minimize.

313
00:13:11,700 --> 00:13:13,990
Everybody more or less understands functions,

```
00:13:13,990 --> 00:13:15,130
but for a physicist,
3 1 5
00:13:15,130 --> 00:13:18,310
I can see that function as an Hamiltonian.
316
00:13:18,310 --> 00:13:20,497
Directly when you tell me
Hamiltonian, I was like, yay.
317
00:13:20,497 --> 00:13:23,023
I have a lot of tools in my toolbox
318
00:13:23,023 --> 00:13:24,736
to be able to deal with that.
319
00:13:24,736 --> 00:13:28,290
And I can view the
Hamiltonian as a landscape.
320
00:13:28,290 --> 00:13:31,280
You could imagine, for
example, in the Himalayas,
321
00:13:31,280 --> 00:13:33,140
you have a lot of hills and valleys,
322
00:13:33,140 --> 00:13:35,420
can be kind of very crazy landscape.
323
00:13:35,420 --> 00:13:38,800
And solving the optimization problem means
324
00:13:38,800 --> 00:13:40,410
from a physics standpoint is
325
00:13:40,410 --> 00:13:43,320
finding the ground
state of the Hamiltonian
```

326
00:13:43,320 --> 00:13:46,090
that represents that optimization problem.
327
00:13:46,090 --> 00:13:47,950
But from a graphical point of view,
328
00:13:47,950 --> 00:13:52,820
it means finding the deepest valley in that mountain.

329
00:13:52,820 --> 00:13:54,520
And for you to find the deepest valley,
330
00:13:54,520 --> 00:13:56,980 you need to search, go up and down.

331
00:13:56,980 --> 00:13:58,910 And depending on how you search, 332
00:13:58,910 --> 00:14:01,890
you can be more efficient
in finding the landscape.
333
00:14:01,890 --> 00:14:05,240
But if your landscape, for
example, has a lot of valleys,
334
00:14:05,240 --> 00:14:07,169
a lot of saddle points,
335
00:14:07,169 --> 00:14:10,110
it has tall hills, right,
336
00:14:10,110 --> 00:14:13,160 and maybe very wide hills,

337
00:14:13,160 --> 00:14:14,720

```
it might be difficult for you
338
00:14:14,720 --> 00:14:17,460
to be able to find the deepest valleys.
339
00:14:17,460 --> 00:14:18,830
This is hardest search problem
340
00:14:18,830 --> 00:14:21,930
where solving on optimization
problem would be seen.
341
00:14:21,930 --> 00:14:24,610
- Would it be similar
to if you wanted to find
342
00:14:24,610 --> 00:14:27,150
the deepest valley in the Himalayas,
343
00:14:27,150 --> 00:14:29,360
you could walk up and
down all of these things,
344
00:14:29,360 --> 00:14:31,480
but optimization is a way,
345
00:14:31,480 --> 00:14:34,780
is an attempt to not put in
that sort of brute force work,
346
00:14:34,780 --> 00:14:38,170
but find the simplest route to the answer.
347
00:14:38,170 --> 00:14:40,570
- Exactly, it's finding the
simplest route to the answer,
348
00:14:40,570 --> 00:14:44,360
which definitely what you just
```

described going up and down
349
00:14:44,360 --> 00:14:46,070
could be mimicked with algorithms.
350
00:14:46,070 --> 00:14:47,970
And it has been mimicked with algorithm.
351
00:14:47,970 --> 00:14:51,090
The most notable one
is simulated annealing,
352
00:14:51,090 --> 00:14:54,320 where going up and down is having some thermal energy

353
00:14:54,320 --> 00:14:56,520
to basically overcome barrier
354
00:14:56,520 --> 00:15:00,270
till hopefully, basically
you find the deepest minimum.
355
00:15:00,270 --> 00:15:02,250
But imagine that you're going up and down with your car.

356
00:15:02,250 --> 00:15:04,470
Some moment, I mean, fuel is gone.
357
00:15:04,470 --> 00:15:05,610
What do you do?
358
00:15:05,610 --> 00:15:06,760
So in the simulation is
359
00:15:06,760 --> 00:15:08,840
when you are ramping down the temperature,

360
00:15:08,840 --> 00:15:11,550
and then yeah, there's
no temperature, no fuel,
361
00:15:11,550 --> 00:15:13,620
which means no fuel, no kinetic energy.
362
00:15:13,620 --> 00:15:16,200
And then you get stuck in
a local minimum, right?
363
00:15:16,200 --> 00:15:18,660
But you could think of a different paradigm

364
00:15:18,660 --> 00:15:21,670
which people have thought
of using quantum computers
365
00:15:21,670 --> 00:15:24,470
or using one property of quantum system
366
00:15:24,470 --> 00:15:26,490
that is called quantum tunneling. Right?
367
00:15:26,490 --> 00:15:29,200
Then instead of going
up and down the valley,
368
00:15:29,200 --> 00:15:31,800
you basically tunnel through the hills
369
00:15:31,800 --> 00:15:33,910
in the search of the deepest minimum.
370
00:15:33,910 --> 00:15:36,330
And then that hopefully
will be a faster way

371
00:15:36,330 --> 00:15:38,250
for you to find the deepest minimum.
372
00:15:38,250 --> 00:15:41,280
This is not a crazy intuition, because when you think

373
00:15:41,280 --> 00:15:44,140
about the way we build tunnels nowadays,
374
00:15:44,140 --> 00:15:46,790
if you're like a building company and they say, okay,

375
00:15:46,790 --> 00:15:49,040
you need to build like either rail tracks
376
00:15:49,040 --> 00:15:51,810
or you need to build a
road through the mountain,
377
00:15:51,810 --> 00:15:55,200
if you see that the mountain
is for example, very tall,
378
00:15:55,200 --> 00:15:58,350
but then the width is not that long,
379
00:15:58,350 --> 00:16:00,663
you're not gonna build these
tracks on top of the mountain.
380
00:16:00,663 --> 00:16:01,850
That doesn't make sense.
381
00:16:01,850 --> 00:16:04,230
You build a tunnel, quantum tunneling.

```
00:16:04,230 --> 00:16:06,820
So that's kind of the idea.
383
00:16:06,820 --> 00:16:08,990
But at the same time, if your mountain,
384
00:16:08,990 --> 00:16:10,850
the height is not that high
385
00:16:10,850 --> 00:16:14,200
but it has a very like long width,
386
00:16:14,200 --> 00:16:15,510
doesn't make sense to build a tunnel.
387
00:16:15,510 --> 00:16:16,343
You just go over it.
388
00:16:16,343 --> 00:16:18,800
So classically it's better.
389
00:16:18,800 --> 00:16:21,389
So that's the reason why most of the time,
390
00:16:21,389 --> 00:16:24,020
people do not care
whether quantum tunneling
391
00:16:24,020 --> 00:16:26,430
or quantum annealing or
classical learning is better.
392
00:16:26,430 --> 00:16:30,360
It totally depends on the
shape of the landscape,
393
00:16:30,360 --> 00:16:32,320
and the shape of the landscape depends
```

394
00:16:32,320 --> 00:16:34,120
on the hardness of the problem.
395
00:16:34,120 --> 00:16:36,720

- You told us that your company, yiyaniQ,

396
00:16:36,720 --> 00:16:39,406
its main focus is using these techniques
397
00:16:39,406 --> 00:16:42,070
on the problem of pricing derivatives.
398
00:16:42,070 --> 00:16:44,500
And that's a financial markets term
399
00:16:44,500 --> 00:16:45,540 that I barely understand.

400
00:16:45,540 --> 00:16:47,810
I believe derivatives are contracts
401
00:16:47,810 --> 00:16:49,580
between financial institutions
402
00:16:49,580 --> 00:16:52,010
that are based on assets
within these contracts.
403
00:16:52,010 --> 00:16:53,240
That's about all I know,
404
00:16:53,240 --> 00:16:54,893
but it's a difficult problem.
405
00:16:55,810 --> 00:16:58,070
Pricing derivatives, I know, is a very difficult thing.

406
00:16:58,070 --> 00:17:00,440
I'm hoping you can tell
us why it's difficult,
407
00:17:00,440 --> 00:17:02,020
how it's currently done
408
00:17:02,020 --> 00:17:05,320
and how you hope to do it better and more efficiently.

409
00:17:05,320 --> 00:17:07,040

- Yeah, that's a very, very good question.

410
00:17:07,040 --> 00:17:09,440
Indeed, like we are
focusing on what is called
411
00:17:09,440 --> 00:17:10,850
over-the-counter derivatives
412
00:17:10,850 --> 00:17:14,870
that are mainly traded by very big financial institutions.

413
00:17:14,870 --> 00:17:19,660
And some of them, they're called like structured products,

414
00:17:19,660 --> 00:17:23,030
they are quite complicated to price.
415
00:17:23,030 --> 00:17:25,040
So the way it's currently being done
416
00:17:25,040 --> 00:17:28,170
is using Markov chain Monte Carlo.
417

```
00:17:28,170 --> 00:17:30,850
And for you to be able to price them,
4 1 8
00:17:30,850 --> 00:17:33,520
you need to come up with a large number
4 1 9
00:17:33,520 --> 00:17:36,060
of possible financial scenarios
4 2 0
00:17:36,060 --> 00:17:38,420
that obeys the law of large numbers.
4 2 1
00:17:38,420 --> 00:17:42,420
So the variance of your
estimator, of your price,
4 2 2
00:17:42,420 --> 00:17:44,680
goes down with one over the square root
4 2 3
00:17:44,680 --> 00:17:47,180
of the number of scenarios
that you can generate.
4 2 4
00:17:47,180 --> 00:17:50,890
So basically you need to
generate a lot of scenarios
4 2 5
00:17:50,890 --> 00:17:53,180
to come up with an accuracy
4 2 6
00:17:53,180 --> 00:17:55,570
that satisfies a trader, for example.
427
00:17:55,570 --> 00:17:56,530
That takes a lot of time.
4 2 8
00:17:56,530 --> 00:17:59,820
So we talked to some
traders working at banks.
```

429
00:17:59,820 --> 00:18:01,190
They told us that some of the books

430

00:18:01,190 --> 00:18:05,660
that have a lot of underlying products in one contract

431
00:18:05,660 --> 00:18:09,220
can take from 60 to 90
minutes time to price,
432
00:18:09,220 --> 00:18:11,450
and they need to price it a lot of times
433
00:18:11,450 --> 00:18:13,700 during the day, every day.

434
00:18:13,700 --> 00:18:17,500
So not only it takes a lot
of time, since they have,
435
00:18:17,500 --> 00:18:20,240
like they cannot go beyond a certain amount of time,

436
00:18:20,240 --> 00:18:23,580 which means they cannot price a certain number of scenarios,

437
00:18:23,580 --> 00:18:26,050
they have to reduce the
number of scenarios of price.
438
00:18:26,050 --> 00:18:29,180
It means they cannot have
the margin that they expect.
439
00:18:29,180 --> 00:18:30,013

So they told us that sometimes

440

00:18:30,013 --> 00:18:33,890
they could be mishedge of $\$ 10$ million.
441
00:18:33,890 --> 00:18:35,202
That's the error bar
442
00:18:35,202 --> 00:18:36,842
of price.

- \$10 million error bar.

443
00:18:36,842 --> 00:18:37,675

- Exactly.

444
00:18:37,675 --> 00:18:39,354

- I wish I had that error bar.

445
00:18:39,354 --> 00:18:40,760

- That's very huge.
- Well, it depends

446
00:18:40,760 --> 00:18:41,956
which direction it's in.
447
00:18:41,956 --> 00:18:42,987
(all laughing)
448
00:18:42,987 --> 00:18:44,070

- That's very huge.

449
00:18:44,070 --> 00:18:48,310
So idea is basically because
we know there are some methods
450
00:18:48,310 --> 00:18:52,400
that are more efficient than Markov chain Monte Carlo,

451
00:18:52,400 --> 00:18:55,380
be able to price it faster
452
00:18:55,380 --> 00:18:57,300
and also more accurate.
453
00:18:57,300 --> 00:19:00,950
This is what we are hoping to achieve.
454
00:19:00,950 --> 00:19:05,190
So typically you want to find the deepest valley,

455
00:19:05,190 --> 00:19:06,340 but sometimes it's very hard.

456
00:19:06,340 --> 00:19:08,160
So if you want, you find a valley
457
00:19:08,160 --> 00:19:10,650
that is not so far from the deepest valley, you're fine.

458
00:19:10,650 --> 00:19:13,220
That's like they call it
near optimal solutions.
459
00:19:13,220 --> 00:19:14,790
That would be fine as well.
460
00:19:14,790 --> 00:19:16,670
Say for example, you're solving
461
00:19:16,670 --> 00:19:19,770
the traveling salesman
premise, as you mentioned,
462
00:19:19,770 --> 00:19:22,470
if you don't find optimal path, okay,
463
00:19:22,470 --> 00:19:23,960
the salesman will not be angry
464
00:19:23,960 --> 00:19:25,530
if you find a near optimal path.
465
00:19:25,530 --> 00:19:27,741
That saves him time and money.
466
00:19:27,741 --> 00:19:29,098

- Right.
- Right?

467
00:19:29,098 --> 00:19:30,151

- He probably won't know

468
00:19:30,151 --> 00:19:31,870
that it's not the actual optimal path.
469
00:19:31,870 --> 00:19:32,920

- (laughs) He probably won't know.

470
00:19:32,920 --> 00:19:34,470

- Yeah, that problem essentially is

471
00:19:34,470 --> 00:19:36,270
how does a traveling salesperson
472
00:19:36,270 --> 00:19:37,950
hit a certain number of cities
473
00:19:37,950 --> 00:19:40,130
in the most efficient way possible.
474
00:19:40,130 --> 00:19:43,500
And it's just a very difficult

```
mathematical problem, right,
4 7 5
00:19:43,500 --> 00:19:45,150
an optimization problem.
4 7 6
00:19:45,150 --> 00:19:47,473
- Yeah, definitely,
definitely, definitely.
4 7 7
00:19:47,473 --> 00:19:52,140
So if it's not exactly solved,
but approximately solved.
4 7 8
00:19:52,140 --> 00:19:55,640
So for the financial case,
what we are trying to do,
4 7 9
00:19:55,640 --> 00:19:58,440
so the crucial part of our approach is
4 8 0
00:19:58,440 --> 00:20:02,370
that we need to be able to
model the financial problem
4 8 1
00:20:02,370 --> 00:20:05,650
of derivative pricing as an optimization.
4 8 2
00:20:05,650 --> 00:20:08,120
And then we can use quantum annealers.
4 8 3
00:20:08,120 --> 00:20:13,120
We can use all kind of flavor
of simulated annealing,
4 8 4
00:20:13,350 --> 00:20:15,880
parallel tempering, whatever it is.
4 8 5
00:20:15,880 --> 00:20:18,030
We can use variational annealing.
```

486
00:20:18,030 --> 00:20:21,990
We can use mem, just
variational optimization
487
00:20:21,990 --> 00:20:23,470 with neural network.

488
00:20:23,470 --> 00:20:27,490
So that's where you really
need the financial expertise
489
00:20:27,490 --> 00:20:30,890
to be able to cast it as
an optimization problem.
490
00:20:30,890 --> 00:20:33,480
That's our approach, which is different
491
00:20:33,480 --> 00:20:37,300
from the approach people
have been having before
492
00:20:37,300 --> 00:20:38,740
because we know for example,
493
00:20:38,740 --> 00:20:41,880
there are algorithms
on the quantum computer
494
00:20:41,880 --> 00:20:43,840
to solve the price derivative,
495
00:20:43,840 --> 00:20:46,000
like quantum amplitude estimation
496
00:20:46,000 --> 00:20:49,000
on measurement-based quantum computers.

497
00:20:49,000 --> 00:20:52,800
But we could use measurement-based quantum computer as well,

498
00:20:52,800 --> 00:20:54,970
because we know that the techniques
499
00:20:54,970 --> 00:20:59,800
like QA, quantum approximate optimization algorithm

500
00:20:59,800 --> 00:21:02,010
can be used to solve an optimization
501
00:21:02,010 --> 00:21:05,480
from a CP-based or measurement-based quantum computer.

502
00:21:05,480 --> 00:21:08,920
But by looking at the current
state of quantum device
503
00:21:08,920 $-->00: 21: 11,840$
with the qubit bonds,
with the noise level,
504
00:21:11,840 --> 00:21:14,700
we feel like for relevant
real-world problems,
505
00:21:14,700 --> 00:21:15,700
we are not there.
506
00:21:15,700 --> 00:21:17,860
So our approach was mainly focused
507
00:21:17,860 --> 00:21:19,670
on an annealing-based approach,

508
00:21:19,670 --> 00:21:23,700
plus physics inspired, plus machine learning techniques.

509
00:21:23,700 --> 00:21:26,950

- And the name of your company is really interesting.

510
00:21:26,950 --> 00:21:29,320
And I'm wondering if you'll share with us the story

511
00:21:29,320 --> 00:21:33,040
of what the name means and how you came up with it.

512
00:21:33,040 --> 00:21:35,480

- Definitely, so I like the PIQuIL so much

513
00:21:35,480 --> 00:21:38,350
and the fact that our kind of motto
514
00:21:38,350 --> 00:21:39,740
is kind of quantum intelligence.
515
00:21:39,740 --> 00:21:41,560
So I wanted to have something similar,
516
00:21:41,560 --> 00:21:44,750
but in my local language, to be innovative
517
00:21:44,750 --> 00:21:48,720
and to differentiate
self from everybody else.
518
00:21:48,720 --> 00:21:51,520
But I don't speak my local
language very well (laughs).

519
00:21:51,520 --> 00:21:53,670
So I kind of, I asked my whole family,
520
00:21:53,670 --> 00:21:57,670
my mom, my dad, my brothers
and my uncle and aunts
521
00:21:57,670 --> 00:22:00,510
to come up with a name that
means quantum intelligence
522
00:22:00,510 --> 00:22:02,210
in my local tongue called Basaa.
523
00:22:02,210 --> 00:22:04,721
First they told me that quantum, they don't know what it is,

524
00:22:04,721 --> 00:22:06,950
(Lauren laughing)
even in English (laughs).
525
00:22:06,950 --> 00:22:08,690
So we kind of put it out of the picture.
526
00:22:08,690 --> 00:22:12,080
I told them, okay, something
like shell intelligence,
527
00:22:12,080 --> 00:22:13,560
intelligence of the future,
528
00:22:13,560 --> 00:22:14,810
something like that.
529
00:22:14,810 --> 00:22:17,620
They came up with different
names and my mom won.

530
00:22:17,620 --> 00:22:19,170
She came with yiyani.
531
00:22:19,170 --> 00:22:21,970
Yi, that means intelligence, and yani tomorrow,

532
00:22:21,970 --> 00:22:24,960 which means the intelligence of the future basically,

533
00:22:24,960 --> 00:22:26,400 and the Q at the end.

534
00:22:26,400 --> 00:22:28,760

- So intelligence, future, quantum,

535
00:22:28,760 --> 00:22:31,370
it seems like a pretty great name for what you're doing.

536
00:22:31,370 --> 00:22:33,130

- Yeah, yeah, definitely.
- Yeah.

537
00:22:33,130 --> 00:22:36,640

- Do you remember any of the names that didn't make the cut?

538
00:22:36,640 --> 00:22:38,552

- No, my God, so many.

539
00:22:38,552 --> 00:22:41,277
(all laughing)
540
00:22:41,277 --> 00:22:44,760

- And so I know your company
has grown a lot, as you alluded

541
00:22:44,760 --> 00:22:48,100
to through this Creative
Destruction Lab program.
542
00:22:48,100 --> 00:22:51,020
Could you tell us a little bit more about this program?

543
00:22:51,020 --> 00:22:55,130

- Yes, so basically it
is like an incubator
544
00:22:55,130 --> 00:22:56,410
for quantum companies.
545
00:22:56,410 --> 00:22:57,670
In fact, they had a number
546
00:22:57,670 --> 00:23:02,520
that about 25% of the quantum computing companies

547
00:23:02,520 --> 00:23:04,010 passed through their program,

548
00:23:04,010 --> 00:23:05,223
can you imagine, in the whole world.
549
00:23:05,223 --> 00:23:08,560
So it's really like one
of the main incubators
550
00:23:08,560 --> 00:23:10,610
of quantum computing companies.
551
00:23:10,610 --> 00:23:15,050
I knew about it before, because Roger is very much involved.

552
00:23:15,050 --> 00:23:17,400
I think he's the academic director of CDL.
553
00:23:17,400 --> 00:23:18,780
So I already knew about that.
554
00:23:18,780 --> 00:23:20,350
And when I decided to create a company,
555
00:23:20,350 --> 00:23:21,980
I applied for the boot camp.
556
00:23:21,980 --> 00:23:24,410
So they have a boot camp usually during the summer

557
00:23:24,410 --> 00:23:27,620
for about a month half-ish.
558
00:23:27,620 --> 00:23:28,537
And so I went there.
559
00:23:28,537 --> 00:23:31,360
There are a lot of course fundamentals
560
00:23:31,360 --> 00:23:35,040
of quantum computing, quantum physics.
561
00:23:35,040 --> 00:23:37,990
What are the current states
of quantum architectures?
562
00:23:37,990 --> 00:23:41,480
There are so many different way of building a qubit.

563
00:23:41,480 --> 00:23:43,860
What are the current business cases?

564
00:23:43,860 --> 00:23:47,150
What are the potential
advantages and things like that.
565
00:23:47,150 --> 00:23:51,450
And then you have a world core of quantum enthusiasts.

566
00:23:51,450 --> 00:23:52,830
You could start a company
567
00:23:52,830 --> 00:23:54,410
or you could, because
some of them are startup,
568
00:23:54,410 --> 00:23:55,410 you could join a company.

569
00:23:55,410 --> 00:24:00,300
I got a lot like offers for
example, during the bootcamp.
570
00:24:00,300 --> 00:24:03,370
But then yeah, so the idea of that is
571
00:24:03,370 --> 00:24:06,960
basically helping people who have ideas
572
00:24:06,960 --> 00:24:10,558
on using quantum computing technology
573
00:24:10,558 --> 00:24:12,060
to solve real-world problems,
574
00:24:12,060 --> 00:24:16,970
to basically groom them, help
them navigating the landscape.

575
00:24:16,970 --> 00:24:18,900

- And I know you have a lot of experience

576
00:24:18,900 --> 00:24:20,870
working in the academic side.
577
00:24:20,870 --> 00:24:22,810
But probably working in industry,
578
00:24:22,810 --> 00:24:24,800
I guess there's a whole new skill set
579
00:24:24,800 --> 00:24:27,030
that comes with working in this new field.
580
00:24:27,030 --> 00:24:28,650
Were there any lessons
581
00:24:28,650 --> 00:24:31,820
that were particularly
useful from this camp,
582
00:24:31,820 --> 00:24:33,270
as you tried to build this bridge
583
00:24:33,270 --> 00:24:35,750
between academia and industry?
584
00:24:35,750 --> 00:24:39,400

- Definitively, I still
want to do research.
585
00:24:39,400 --> 00:24:41,650
For me, the most shocking truth
586
00:24:41,650 --> 00:24:44,733
is that businesses don't
think like researchers.

587
00:24:45,610 --> 00:24:47,840
I learned that they don't
care whether you're using
588
00:24:47,840 --> 00:24:49,740
state of art technology or new technology.
589
00:24:49,740 --> 00:24:52,070
They just want you to solve a problem.
590
00:24:52,070 --> 00:24:56,120
And so for me, when I think
about, oh, if I, for example,
591
00:24:56,120 --> 00:24:59,276
improve an algorithm of an order
592
00:24:59,276 --> 00:25:02,100
or two order of magnitudes, I'm excited.
593
00:25:02,100 --> 00:25:06,140
If it does not translate into them earning more money,

594
00:25:06,140 --> 00:25:08,240
they don't care about
that, (chuckles) right?
595
00:25:08,240 --> 00:25:12,810
So it makes me have a different approach
596
00:25:12,810 --> 00:25:16,300
on doing research for business.
597
00:25:16,300 --> 00:25:17,540
I have to do research, yes.
598

```
00:25:17,540 --> 00:25:21,580
I need to think about using
the best possible tools, yes.
599
00:25:21,580 --> 00:25:22,550
But at the same time,
6 0 0
00:25:22,550 --> 00:25:25,593
I need to think about
potential business advantage,
6 0 1
00:25:26,470 --> 00:25:28,010
which we don't think about.
602
00:25:28,010 --> 00:25:29,480
Of course, we don't think about that.
6 0 3
00:25:29,480 --> 00:25:32,183
We are most interested in
solving exciting problems.
604
00:25:33,110 --> 00:25:35,140
- It's like optimizing
a different function.
6 0 5
00:25:35,140 --> 00:25:36,219
- Exactly.
606
00:25:36,219 --> 00:25:37,334
(Estelle and Lauren laughing)
607
00:25:37,334 --> 00:25:39,260
- Was the term boot camp applicable?
608
00:25:39,260 --> 00:25:41,110
Was it pretty intense?
609
00:25:41,110 --> 00:25:44,670
- Oh yeah, it was like, it was crazy.
```

610
00:25:44,670 --> 00:25:47,710
And in fact, the craziest
time of the boot camp
611
00:25:47,710 --> 00:25:49,370
was it had a two day hackathon.
612
00:25:49,370 --> 00:25:51,920
I think I probably slept like three hours
613
00:25:51,920 --> 00:25:54,110
during those two days.
614
00:25:54,110 --> 00:25:56,810
You had to come up with an idea
615
00:25:56,810 --> 00:26:00,414
to solve a relevant business problem using a quantum.

616
00:26:00,414 --> 00:26:01,680

- In two days.
- In two days.

617
00:26:01,680 --> 00:26:04,260

- And any problem, or they told you a certain problem?

618
00:26:04,260 --> 00:26:05,290

- Any problem of your choice.

619
00:26:05,290 --> 00:26:08,300
So they had some problems, that maybe some hints,

620
00:26:08,300 --> 00:26:11,590
but any problem using
some of the architectures

621
00:26:11,590 --> 00:26:13,660
that were made available to us.
622
00:26:13,660 --> 00:26:16,140
And yeah, program it and come up with results.

623
00:26:16,140 --> 00:26:18,700
So there was only, not
only the scientific value.
624
00:26:18,700 --> 00:26:21,140
You need to come up with a business pitch,
625
00:26:21,140 --> 00:26:23,710
like do some quick market research,
626
00:26:23,710 --> 00:26:25,360
show that, come up with the numbers
627
00:26:25,360 --> 00:26:27,327
that this is a relevant problem
628
00:26:27,327 --> 00:26:30,410
and have a short video
of making your pitch.
629
00:26:30,410 --> 00:26:32,040

- Hang on, you've got two days

630
00:26:32,040 --> 00:26:33,850
to develop quantum algorithms
631
00:26:33,850 --> 00:26:35,920 and a business pitch and a video.

632
00:26:35,920 --> 00:26:36,753

- Yes.
- Okay.

633
00:26:36,753 --> 00:26:38,840
So when did you get those
three hours of sleep?
634
00:26:38,840 --> 00:26:40,270
(all laughing)

635
00:26:40,270 $->$ 00:26:42,197

- I was working with

Behnam until midnight,

636
00:26:42,197 --> 00:26:43,223
I think.
(Colin and Estelle laughing)
637
00:26:43,223 --> 00:26:44,920

- Did you just crash at the end?

638
00:26:44,920 $->$ 00:26:46,367

- It's when we stopped talking

639
00:26:46,367 --> 00:26:47,660
around maybe midnight or 1:00,
640
00:26:47,660 --> 00:26:50,550
and then I kept working till probably 3:00

641
00:26:50,550 $->$ 00:26:53,697
and got up at 6:00, and
started working again.

642
00:26:53,697 --> 00:26:56,740

- And what did you
actually end up developing?
643
$00: 26: 56,740 \rightarrow->00: 27: 00,870$
- Oh, we basically wrote a code on the D-Wave machine

644
00:27:00,870 --> 00:27:02,223
to solve a portfolio optimization.
645
00:27:02,223 --> 00:27:04,340
And we had to push it on GitHub.
646
00:27:04,340 --> 00:27:07,190
So it's available on CDL GitHub.
647
00:27:07,190 --> 00:27:08,480

- So hold on, not only did you have

648
00:27:08,480 --> 00:27:10,140
to come up with an algorithm and a business plan,

649
00:27:10,140 --> 00:27:11,360
but then you had to push this out
650
00:27:11,360 --> 00:27:13,040
and make it available to other people.
651
00:27:13,040 --> 00:27:14,657

- Yeah, publicly available, yeah.

652
00:27:14,657 --> 00:27:16,280

- And you mentioned D-Wave.

653
00:27:16,280 --> 00:27:18,510
Can you explain a little
bit about what that is?
654
00:27:18,510 --> 00:27:21,073

- Oh yes, so D-Wave is a
quantum computing company.

655
00:27:21,073 --> 00:27:24,480
It was the first one to
actually commercialize
656
00:27:24,480 --> 00:27:26,280
the quantum computer.
657
00:27:26,280 --> 00:27:29,270
And so they are mostly focused
658
00:27:29,270 --> 00:27:31,660
on annealing-based approach
659
00:27:31,660 --> 00:27:33,050
as is solving optimization.
660
00:27:33,050 --> 00:27:35,880
Even though recently, they
announced that they are starting
661
00:27:35,880 --> 00:27:38,930
to build also CP-based quantum computers.
662
00:27:38,930 --> 00:27:41,097
So one of the cool thing that they did,
663
00:27:41,097 --> 00:27:44,220
and a lot of quantum computing companies are doing now

664
00:27:44,220 --> 00:27:47,910
is if I want to run simulations
on a quantum computer,
665
00:27:47,910 --> 00:27:51,853
I don't need to go and buy 10 million, whatever the cost is,

666

```
00:27:51,853 --> 00:27:52,917
- Thank goodness.
- And come
6 6 7
00:27:52,917 --> 00:27:54,530
and install it at Perimeter.
6 6 8
00:27:54,530 --> 00:27:56,900
You can have access to it through cloud.
669
00:27:56,900 --> 00:27:58,330
And so you have an API code
6 7 0
00:27:59,290 --> 00:28:01,870
and you just, yeah, pass in parameters
6 7 1
00:28:01,870 --> 00:28:04,450
and it spits you back
basically the results.
672
00:28:04,450 --> 00:28:06,770
And you can even see which qubit
6 7 3
00:28:06,770 --> 00:28:08,830
you have been using the quantum processor
6 7 4
00:28:08,830 --> 00:28:10,210
to basically solve your problem.
6 7 5
00:28:10,210 --> 00:28:13,660
- So you can implement
your algorithms on D-Wave,
6 7 6
00:28:13,660 --> 00:28:16,253
but in the cloud you
can do it from anywhere?
677
00:28:17,490 --> 00:28:18,555
- Definitely, yeah.
```

678
00:28:18,555 --> 00:28:19,912

- It's amazing.
- Oh, not anywhere.

679
00:28:19,912 --> 00:28:22,980
It depends on where they
have the clouds deployed.
680
00:28:22,980 --> 00:28:26,610
I think now you can do it
in North America and Europe.
681
00:28:26,610 --> 00:28:28,440
South America, I'm not so sure.
682
00:28:28,440 --> 00:28:29,390 Africa, I'm not so sure.

683
00:28:29,390 --> 00:28:30,830 Probably in Japan as well.

684
00:28:30,830 --> 00:28:34,780
So as they are expanding, they provide that cloud service.

685
00:28:34,780 --> 00:28:36,090

- And as you've said, Estelle,

686
00:28:36,090 --> 00:28:38,920
it seems like there's just
so many different priorities
687
00:28:38,920 --> 00:28:41,170
that you have to balance
when you're doing this work
688
00:28:41,170 --> 00:28:44,130
at kind of the intersection
of academia and industry.
689
00:28:44,130 --> 00:28:46,800
And we had a grad student
from here in Waterloo
690
00:28:46,800 --> 00:28:48,503
send in a question about that.
691
00:28:49,779 --> 00:28:50,660

- This is Matthew Duschenes,

692
00:28:50,660 --> 00:28:52,760
a student at IQC and Perimeter.
693
00:28:52,760 --> 00:28:53,593
I'm wondering, how do you balance
694
00:28:53,593 --> 00:28:55,520
coming up with novel research ideas
695
00:28:55,520 --> 00:28:59,170
versus staying focused on your
specific startup objectives?
696
00:28:59,170 --> 00:29:00,883

- Nice question, very, very important question.

697
00:29:01,940 --> 00:29:04,137
I ask myself that
question every single day.
698
00:29:04,137 --> 00:29:05,990
(Estelle and Lauren laughing)
699
00:29:05,990 --> 00:29:07,650

- Are you able to balance these things

700
00:29:07,650 --> 00:29:09,260
or is it always a juggling act?
701
00:29:09,260 --> 00:29:11,560

- In the beginning, it was so hard.

702
00:29:11,560 --> 00:29:13,660
It was really, really, really very hard.
703
00:29:13,660 --> 00:29:17,030
Now I'm kind of equilibrating roles,
704
00:29:17,030 --> 00:29:19,070 dividing my time half, half,

705
00:29:19,070 --> 00:29:22,940 not every week, but yeah, that's what I'm trying to do.

706
00:29:22,940 --> 00:29:27,910
Because for the company, definitively I'm doing

707
00:29:27,910 --> 00:29:30,830
like an application of my techniques,
708
00:29:30,830 --> 00:29:34,830
but we are in a very fast-paced milieu,
709
00:29:34,830 --> 00:29:39,510
whereby you need to be aware
of whatever is state of art.
710
00:29:39,510 --> 00:29:41,680
So you need to be on top of your game
711
00:29:41,680 --> 00:29:43,670
as far as research is concerned.

712
00:29:43,670 --> 00:29:45,480
So I need to keep an open eye
713
00:29:45,480 --> 00:29:47,173
on the research world as well. That's why.
714
00:29:47,173 --> 00:29:48,850

- Must be changing every day.

715
00:29:48,850 --> 00:29:51,500

- Exactly. So it's not as before

716
00:29:51,500 --> 00:29:54,550
that I could read archive paper every morning.

717
00:29:54,550 --> 00:29:55,683
I cannot do that anymore.
718
00:29:55,683 --> 00:29:56,840
(Estelle and Colin laughing).
719
00:29:56,840 --> 00:29:59,760
I can attend journal
clubs, attend conferences,
720
00:29:59,760 --> 00:30:02,730
and I talk to collaborators
721
00:30:02,730 --> 00:30:05,340
to keep in touch with what is happening
722
00:30:05,340 --> 00:30:07,030
as far as research is concerned.
723
00:30:07,030 --> 00:30:09,970
I was groomed as a PhD student

724
00:30:09,970 --> 00:30:13,820
that a problem is
interesting when it's hard.
725
00:30:13,820 --> 00:30:17,180
I mean, if it is not hard,
what's the point (laughs)?
726
00:30:17,180 --> 00:30:21,020
So I really like taking
on very hard problems
727
00:30:21,020 --> 00:30:23,943
and if they're relevant
to an everyday person.
728
00:30:24,790 --> 00:30:27,173

- When you get stuck on
a really hard problem,
729
00:30:28,030 --> 00:30:30,000 what do you do to push through it,

730
00:30:30,000 --> 00:30:31,923
to get past that obstacle?
731
00:30:33,390 --> 00:30:37,022

- I do it very badly, usually (laughs), almost depressed.

732
00:30:37,022 --> 00:30:41,940
Anyhow, but yeah, typically just take a step back

733
00:30:41,940 --> 00:30:45,300 and try to do something else.

734
00:30:45,300 --> 00:30:47,890

I mean, go boxing.

- Boxing?

735
00:30:47,890 --> 00:30:52,740

- Go swimming or running, something different.

736
00:30:52,740 --> 00:30:55,990
Sometimes involves
talking to collaborators
737
00:30:55,990 --> 00:30:58,920
to get some of the ideas that they have
738
00:30:58,920 --> 00:31:02,780
and coming back to it with fresh eyes.
739
00:31:02,780 --> 00:31:04,390

- So you've been telling us a lot of stories

740
00:31:04,390 --> 00:31:07,150
of things that have happened
in the last few years.
741
00:31:07,150 --> 00:31:08,450
And I'm wondering if we can maybe go
742
00:31:08,450 --> 00:31:09,500
back a little bit further.
743
00:31:09,500 --> 00:31:11,330
Could you tell us the story
744
00:31:11,330 --> 00:31:13,990
of how you first got
into being a scientist
745
00:31:13,990 --> 00:31:16,640
or how you first decided to pursue that type of path?

746
00:31:17,673 --> 00:31:21,490

- I have a very non-typical path

747
00:31:21,490 --> 00:31:23,470
to becoming a scientist.
748
00:31:23,470 --> 00:31:26,588
Yeah, so right away I
should make a disclaimer.
749
00:31:26,588 --> 00:31:29,730
I didn't plan to be a physicist (laughs).
750
00:31:29,730 --> 00:31:31,990

- This wasn't the lifelong dream.

751
00:31:31,990 --> 00:31:35,350

- Nope, it wasn't a lifelong one.

752
00:31:35,350 --> 00:31:37,240
Yeah. Well, I wanted to
do naval architecture.
753
00:31:37,240 --> 00:31:40,570
So I was advised during my high school
754
00:31:41,440 --> 00:31:43,210
that for me to do naval architecture,
755
00:31:43,210 --> 00:31:45,090
I needed to have a bachelor in physics.
756
00:31:45,090 --> 00:31:46,920
So I got.

- Sorry, naval architecture

757
00:31:46,920 --> 00:31:48,780
is designing ships?

- Ships.

758
00:31:48,780 --> 00:31:49,613

- Okay.
- Yeah.

759
00:31:49,613 --> 00:31:50,780
It's very, very different.
760
00:31:50,780 --> 00:31:53,460

- But maybe you're gonna use your methods

761
00:31:53,460 --> 00:31:55,210
for naval architecture next?
762
00:31:55,210 --> 00:31:56,228
I guess we'll see.
763
00:31:56,228 --> 00:31:58,234

- Yeah, why not?

764
00:31:58,234 --> 00:31:59,708

- Maybe there's an optimization problem

765
00:31:59,708 --> 00:32:00,541
in naval architecture.
766
00:32:00,541 --> 00:32:02,110

- Oh, naval architecture, I don't know,

767
00:32:02,110 --> 00:32:06,400
but definitely in the maritime industry on ship route,

768
00:32:06,400 --> 00:32:08,740 there is an opportunity for that.

769
00:32:08,740 --> 00:32:10,450
I even thought about that,
770
00:32:10,450 --> 00:32:12,480
either ship route or ship loading.
771
00:32:12,480 --> 00:32:15,550
For example, imagine I have a big cargo.
772
00:32:15,550 --> 00:32:18,920
It has to load on thousands
of different containers
773
00:32:18,920 --> 00:32:19,820
on the cargo.
774
00:32:19,820 --> 00:32:22,480
What is the best way for you to do that
775
00:32:22,480 --> 00:32:23,400
to optimize the space?
776
00:32:23,400 --> 00:32:27,010
I actually wrote an
algorithm that, VNA, yeah.
777
00:32:27,010 --> 00:32:28,630

- Shipbuilding and ship architecture,

778
00:32:28,630 --> 00:32:30,260
where did this come from?
779
00:32:30,260 --> 00:32:32,380

- Since my mom worked in
the maritime industry,
780
00:32:32,380 --> 00:32:34,860

I was very much influenced by her.
781
00:32:34,860 --> 00:32:36,850
So I wanted to do a job
782
00:32:36,850 --> 00:32:40,710
that was related to sea, ocean, right?
783
00:32:40,710 --> 00:32:42,870
But I wanted to do a technical job,
784
00:32:42,870 --> 00:32:45,867
something that I could
use some of the things
785
00:32:45,867 --> 00:32:48,640
I was interested in, mathematics, physics.
786
00:32:48,640 --> 00:32:51,440
So I found that naval
architecture was the best,
787
00:32:51,440 --> 00:32:53,560
but I was not well-advised.
788
00:32:53,560 --> 00:32:56,790
I found out that you cannot
do naval architecture
789
00:32:56,790 --> 00:32:58,470
with a bachelor in physics.
790
00:32:58,470 --> 00:33:00,500
Then I wanted to do computer science
791
00:33:00,500 --> 00:33:04,050
after when I found out I
couldn't be a naval architect.

792
00:33:04,050 --> 00:33:07,290
But unfortunately that
year in my homeschool,
793
00:33:07,290 --> 00:33:10,980
they didn't open up a
master in computer science.
794
00:33:10,980 --> 00:33:13,000
The only available master was in physics.
795
00:33:13,000 --> 00:33:16,200
So I was like, okay, I
need to go to school.
796
00:33:16,200 --> 00:33:18,310
Let me just really start
for the master in physics.
797
00:33:18,310 --> 00:33:19,450
And I like it.
798
00:33:19,450 --> 00:33:21,190
It was very easy for me to do,
799
00:33:21,190 --> 00:33:23,340
and I think I got first class
800
00:33:23,340 --> 00:33:26,656
and then I got a scholarship
to go to Italy to do it.
801
00:33:26,656 --> 00:33:28,020

- It sounds like you're still interested

802
00:33:28,020 --> 00:33:29,730
in shipping and ships.
803

```
00:33:29,730 --> 00:33:31,900
Is that an ongoing fascination for you,
804
00:33:31,900 --> 00:33:33,700
the maritime industry?
805
00:33:33,700 --> 00:33:38,610
- No, I think it after I was
so disappointed, I should say.
806
00:33:38,610 --> 00:33:41,650
I was really, really, really disappointed
807
00:33:41,650 --> 00:33:44,960
when I found out I was just missing that,
808
00:33:44,960 --> 00:33:46,360
so that kind of died out.
809
00:33:46,360 --> 00:33:48,577
But for computer science, yeah,
810
00:33:48,577 --> 00:33:50,720
I'm mostly programming now.
811
00:33:50,720 --> 00:33:53,240
Almost all of my day I'm writing code.
812
00:33:53,240 --> 00:33:55,980
I kind of brought together my interest
813
00:33:55,980 --> 00:34:00,200
in computer science and
programming in my physics job.
814
00:34:00,200 --> 00:34:02,040
- Well, we actually got a question
8 1 5
```

```
00:34:02,040 --> 00:34:06,050
about how to combine programming
with research in physics.
816
00:34:06,050 --> 00:34:08,043
So could we play the next question?
817
00:34:09,180 --> 00:34:12,100
- Hi, so I'm Hassan Conser from India,
818
00:34:12,100 --> 00:34:15,660
and my question is a
little more career-related.
819
00:34:15,660 --> 00:34:17,850
How do the fields of
programming and physics
820
00:34:17,850 --> 00:34:20,800
mix like simulation machine learning,
821
00:34:20,800 --> 00:34:23,330
and is it necessary to learn programming
822
00:34:23,330 --> 00:34:25,243
when going into field of physics?
823
00:34:26,740 --> 00:34:28,310
- From the first part of your question,
824
00:34:28,310 --> 00:34:31,880
if you think about machine
learning for physics,
825
00:34:31,880 --> 00:34:35,130
you definitely need
programming for that, right?
826
00:34:35,130 --> 00:34:38,220
```

```
But if you have to think
about physics in general,
827
00:34:38,220 --> 00:34:40,520
it really depends on
which field of physics.
828
00:34:40,520 --> 00:34:41,850
There are some fields of physics
829
00:34:41,850 --> 00:34:46,350
where not a heavy amount
of programming is needed,
830
00:34:46,350 --> 00:34:48,390
some even none, just need to do
831
00:34:48,390 --> 00:34:50,830
some kind of analytical work.
832
00:34:50,830 --> 00:34:53,780
But when you think about
the field of physics,
833
00:34:53,780 --> 00:34:55,970
generally as a rule,
834
00:34:55,970 --> 00:34:59,020
my feeling is that little bit skill
835
00:34:59,020 --> 00:35:03,250
on just knowing how to plot
functions is important.
836
00:35:03,250 --> 00:35:05,480
Just knowing Python, which
is very easy to learn,
837
00:35:05,480 --> 00:35:07,490
```

```
should be sufficient to get by.
838
00:35:07,490 --> 00:35:11,990
But if you want in field of
computational physics, yes,
839
00:35:11,990 --> 00:35:15,230
you need to know how to
program a little bit more.
840
00:35:15,230 --> 00:35:16,790
And nowadays it's really easy.
841
00:35:16,790 --> 00:35:18,120
For example, for machine learning,
842
00:35:18,120 --> 00:35:21,060
there are a lot of
libraries you can just use,
843
00:35:21,060 --> 00:35:22,210
I think about 10 or so,
844
00:35:23,130 --> 00:35:24,790
to write prototype of your model
845
00:35:24,790 --> 00:35:27,230
and to test it very quickly.
846
00:35:27,230 --> 00:35:28,197
You have things like Google Colab.
847
00:35:28,197 --> 00:35:32,207
You can use GPUs to
simulate very fast things
848
00:35:32,207 --> 00:35:33,720
and even get some results.
```

849
00:35:33,720 --> 00:35:36,960
So I feel like it shouldn't be seen
850
00:35:36,960 --> 00:35:39,530
as a very huge barrier.
851
00:35:39,530 --> 00:35:41,007
Programming is actually very fun.
852
00:35:41,007 --> 00:35:44,100
But my advice is that you
shouldn't lose sight of the fact
853
00:35:44,100 --> 00:35:46,400 that at the end of the day you're a physicist.

854
00:35:46,400 --> 00:35:49,920
So you need to sharpen
your physical intuition.
855
00:35:49,920 --> 00:35:52,050
I give you the advice
856
00:35:52,050 --> 00:35:54,730
one of my lecturer gave me
when I was doing my PhDs.
857
00:35:55,740 --> 00:35:58,600
You first of all need to
take your pen and paper
858
00:35:58,600 --> 00:36:01,920
and figure out the physics behind the problem.

859
00:36:01,920 --> 00:36:05,320
And once you do that, then
yeah, you can take your computer

860
00:36:05,320 --> 00:36:06,790
and write some code.
861
00:36:06,790 --> 00:36:09,960

- You've used the term physical intuition a couple of times.

862
00:36:09,960 --> 00:36:13,080
I'm hoping you can explain
what you mean by that.
863
00:36:13,080 --> 00:36:16,460

- Physical intuition
is based, I would say,
864
00:36:16,460 --> 00:36:21,000
on the understanding on how nature works
865
00:36:21,000 --> 00:36:25,093
and the understanding of
some physical principle.
866
00:36:25,980 --> 00:36:29,240
Take like the Heisenberg principle for quantum mechanics.

867

00:36:29,240 --> 00:36:32,250
If you know exactly the position of a particle,

868
00:36:32,250 --> 00:36:36,110
you cannot know exactly
momentum of that particle.
869
00:36:36,110 --> 00:36:37,530
So when you think about a problem,
870
00:36:37,530 --> 00:36:40,080
you need to have these kind of things
871
00:36:40,080 --> 00:36:41,780
on the back of your mind,
872
00:36:41,780 --> 00:36:45,120
and that will help you not only interpret results.

873
00:36:45,120 --> 00:36:46,840
It will help you design models
874
00:36:46,840 --> 00:36:50,563
to maybe benchmark something specific about the model.

875
00:36:51,417 --> 00:36:55,270
It's very, very important
to do top class research.
876
00:36:55,270 --> 00:36:56,700
That's my impression.
877
00:36:57,630 --> 00:36:59,790

- You've attended workshops in Africa

878
00:36:59,790 --> 00:37:01,870
about promoting women in science
879
00:37:01,870 --> 00:37:05,070
and just promoting
science in Africa overall.
880
00:37:05,070 --> 00:37:07,510
Can you tell us why you wanted to attend those

881
00:37:07,510 --> 00:37:11,110
and what you hope people

```
got out of your presentation
882
00:37:11,110 --> 00:37:12,060
or your attendance?
83
00:37:13,730 --> 00:37:17,420
- I always find myself
living in a superposition
884
00:37:17,420 --> 00:37:21,203
of two almost orthogonal worlds.
885
00:37:22,210 --> 00:37:25,170
Unfortunately we know
that science in Africa
886
00:37:25,170 --> 00:37:28,070
is a little bit lagging
compared to the West,
887
00:37:28,070 --> 00:37:29,943
but for women it's even worse.
88
00:37:29,943 --> 00:37:31,860
It's like this really was
889
00:37:31,860 --> 00:37:36,000
because a lot of cultural apprehension.
890
00:37:36,000 --> 00:37:40,430
It's changing, it's really
changing, but still sending women
891
00:37:40,430 --> 00:37:43,520
to do what is called hard skills,
892
00:37:43,520 --> 00:37:44,740
typically people think
```

893
00:37:44,740 --> 00:37:49,030
that, okay, math, physics, it's just for men,

894
00:37:49,030 --> 00:37:51,543
even when they're trying to be progressive.

895
00:37:52,890 --> 00:37:54,120
Even here in the West for women,
896
00:37:54,120 --> 00:37:56,870 we see that as you go up the ladder,

897
00:37:56,870 --> 00:37:59,210 we see less and less women.

898
00:37:59,210 --> 00:38:00,990
It's even stronger in Africa
899
00:38:00,990 --> 00:38:04,740
because there's more
commitment that is demanded.
900
00:38:04,740 --> 00:38:09,740
And the role of the woman in family,
901
00:38:09,860 --> 00:38:11,920
it demands a lot of your time.
902
00:38:11,920 --> 00:38:16,303
That makes it very hard for
you to do top class research.
903
00:38:17,400 --> 00:38:19,480
Starting to have these conversations,
904
00:38:19,480 --> 00:38:21,190
one of the feeling that I've been having,
905
00:38:21,190 --> 00:38:25,100
that it has to start first
with women scientists,
906
00:38:25,100 --> 00:38:27,000
African women scientists, the mindset,
907
00:38:27,910 --> 00:38:30,800
to kind of recalibrate the
mindset that it is possible
908
00:38:30,800 --> 00:38:32,470
for me to do science.
909
00:38:32,470 --> 00:38:35,750
I don't necessarily need to create.
910
00:38:35,750 --> 00:38:38,010
It is possible, and from there,
911
00:38:38,010 --> 00:38:41,560
like put together policies.
912
00:38:41,560 --> 00:38:43,560
I feel like this is very important.
913
00:38:43,560 --> 00:38:47,190
Also educate our male counterparts,
914
00:38:47,190 --> 00:38:51,193
starting with our families to really change that mindset.

915
00:38:52,120 --> 00:38:54,530
But me in my career, I
had a lot of instances

```
916
00:38:54,530 --> 00:38:56,730
of people telling me that,
why are you doing your PhD?
917
00:38:56,730 --> 00:38:59,030
You should be married and having kids
918
00:38:59,030 --> 00:39:01,800
and preparing for your husband, (laughs)
919
00:39:01,800 --> 00:39:03,130
right, this kind of a thing.
920
00:39:03,130 --> 00:39:06,190
But I was educated in the
house when my mom told me
921
00:39:06,190 --> 00:39:09,100
that as a female, you can
do whatever a man can do.
922
00:39:09,100 --> 00:39:10,510
I already had that in my mindset,
923
00:39:10,510 --> 00:39:14,410
but other people, they don't
hear that kind of thought.
924
00:39:14,410 --> 00:39:16,190
It can really affect them.
925
00:39:16,190 --> 00:39:18,700
But starting to have this conversation,
926
00:39:18,700 --> 00:39:20,913
we hope to see change.
927
00:39:22,360 --> 00:39:24,210
```

- Is that what you're trying
to do when you go there?
928
00:39:24,210 --> 00:39:25,130
You're trying to help
929
00:39:25,130 --> 00:39:28,683
with this recalibration
process for individuals.
930
00:39:29,560 --> 00:39:31,360
- Even not necessarily when I go there.

931
00:39:31,360 --> 00:39:33,950 Whenever I happen to interact

932
00:39:33,950 --> 00:39:37,210 with female scientists from Africa, 933
00:39:37,210 --> 00:39:39,697
which happened once in a while, yes,
934
00:39:39,697 --> 00:39:44,490
trying to have those conversations, change of the mindset.

935
00:39:44,490 --> 00:39:46,040
It doesn't have to be this way.
936
00:39:46,950 --> 00:39:48,590

- I read that your father,

937
00:39:48,590 --> 00:39:51,050
he'd wanted to get a PhD in physics,
938
00:39:51,050 --> 00:39:54,830
but he didn't 'cause there
are more practical paths.

```
939
00:39:54,830 --> 00:39:56,480
He chose engineering, I believe?
940
00:39:56,480 --> 00:40:01,380
- Yes, actually it was not
too much of his willing.
941
00:40:01,380 --> 00:40:03,410
So my father was, he is still very smart.
942
00:40:03,410 --> 00:40:04,243
He was very smart.
943
00:40:04,243 --> 00:40:08,500
So he had a government grant
after his high school degree
944
00:40:08,500 --> 00:40:11,260
to go to France, to basically to study.
945
00:40:11,260 --> 00:40:12,850
He was studying physics.
946
00:40:12,850 --> 00:40:14,603
And then he wanted to do a PhD in physics,
947
00:40:14,603 --> 00:40:17,840
but the government was paying his stipend.
948
00:40:17,840 --> 00:40:19,370
It's like, we don't need physicists.
949
00:40:19,370 --> 00:40:20,753
We need engineers.
950
00:40:20,753 --> 00:40:23,080
For him not to lose his scholarship,
```

951
00:40:23,080 --> 00:40:25,580
he had to move to engineering.
952
00:40:25,580 --> 00:40:30,486
But then he really encouraged me a lot to do physics.

953
00:40:30,486 --> 00:40:31,540

- So what was his reaction

954
00:40:31,540 --> 00:40:33,593
when you obtained your PhD in physics?
955
00:40:34,838 --> 00:40:35,740

- He was very happy.

956
00:40:35,740 --> 00:40:40,170
In fact, he told a story
during my PhD party
957
00:40:40,170 --> 00:40:42,030
of the fact that when I was doing
958
00:40:42,030 --> 00:40:45,670
first year bachelor in physics back home.
959
00:40:45,670 --> 00:40:48,870
So I did in high school, French education.
960
00:40:48,870 --> 00:40:49,760
I studied in French.
961
00:40:49,760 --> 00:40:53,520
And naturally I'm like French speaker,
962
00:40:53,520 --> 00:40:55,410
my mother tongue, willing God.

963
00:40:55,410 --> 00:40:59,700
But then I moved in English in the Western part of Cameroon.

964
00:40:59,700 --> 00:41:01,240
It was very, very hard.
965
00:41:01,240 --> 00:41:02,930
I needed first to understand the English
966
00:41:02,930 --> 00:41:04,323
before understanding the physics.
967
00:41:04,323 --> 00:41:06,530
It was, I had a dictionary all the time
968
00:41:06,530 --> 00:41:07,680
when I was going to the lecture.
969
00:41:07,680 --> 00:41:09,400
So it was really, really bad.
970
00:41:09,400 --> 00:41:12,980
One month after starting my bachelor in physics,

971
00:41:12,980 --> 00:41:16,170
I passed an engineering concours
972
00:41:16,170 --> 00:41:17,770
in the French side of Cameroon
973
00:41:17,770 --> 00:41:19,600
to become an engineer.
974
00:41:19,600 --> 00:41:20,433
So I called my dad.

975
00:41:20,433 --> 00:41:21,840
I was like "I'm stopping this thing.
976
00:41:21,840 --> 00:41:24,850
It's not going; I need to
go and do engineering."
977
00:41:24,850 --> 00:41:28,780
My dad told me that 'No,
Francophones have been able
978
00:41:28,780 --> 00:41:30,550
to go to that school and graduate.
979
00:41:30,550 --> 00:41:31,450
You're gonna stay there."
980
00:41:31,450 --> 00:41:33,140
I was so mad at my dad.
981
00:41:33,140 --> 00:41:34,153
I was so angry.
982
00:41:35,210 --> 00:41:37,870
But after a couple of months, I picked up the English

983
00:41:37,870 --> 00:41:39,080
and I did very well.
984
00:41:39,080 --> 00:41:41,650
And he told the story during my PhD party
985
00:41:41,650 --> 00:41:44,840
that I hold strong and now
she's a PhD; she's a doctor.
986
00:41:44,840 --> 00:41:46,051

So that was sweet.
987
00:41:46,051 --> 00:41:47,600

- That's beautiful.

988
00:41:47,600 --> 00:41:50,200

- And Estelle, you've told
us so many nice pieces
989
00:41:50,200 --> 00:41:52,740
of your story starting in childhood.
990
00:41:52,740 --> 00:41:55,230
And I know you kind of
have alluded to the fact
991
00:41:55,230 --> 00:41:57,740
of how you made the decision
to come here to Perimeter
992
00:41:57,740 --> 00:41:59,720
for a postdoc after your PhD.
993
00:41:59,720 --> 00:42:02,370
But I know that you actually
had a lot of options
994
00:42:02,370 --> 00:42:04,250
for what to do after you had a PhD.
995
00:42:04,250 --> 00:42:06,130
And I always look back fondly
996
00:42:06,130 --> 00:42:07,370
when you were making that decision
997
00:42:07,370 --> 00:42:10,570
'cause you and I actually
talked before you came here.

998
00:42:10,570 --> 00:42:12,160
And so I always like to tell people
999
00:42:12,160 --> 00:42:14,630
I was one of the first to
meet you here at Perimeter.
1000
00:42:14,630 --> 00:42:16,250
So could you tell us a little bit more
1001
00:42:16,250 --> 00:42:18,430
about how you made that decision?
1002
00:42:18,430 --> 00:42:19,910

- Yes, definitely.

1003
00:42:19,910 --> 00:42:22,930
So one thing I wanted to make sure is
1004
00:42:23,890 --> 00:42:28,318
that people I would be working with, especially Roger Melko,

1005
00:42:28,318 --> 00:42:30,347
I already knew he is a great scientist,
1006
00:42:30,347 --> 00:42:32,930
but I wanted to know that he's a good person to work with.

1007
00:42:32,930 --> 00:42:34,910
So I wrote to you and sent you an email
1008
00:42:34,910 --> 00:42:38,420
and you were very nice to have
a Skype discussion with me.
1009

```
00:42:38,420 --> 00:42:39,590
And I was just convinced.
1010
00:42:39,590 --> 00:42:42,220
There's also Giacomo who sent me an email,
1011
00:42:42,220 --> 00:42:43,230
who replied to my email.
1012
00:42:43,230 --> 00:42:46,384
He told me that it's
amazing to work with Roger.
1013
00:42:46,384 --> 00:42:49,030
That convinced me that
PI is a great place,
1014
00:42:49,030 --> 00:42:52,050
but at the same time I had
opportunities, one in Alberta,
1015
00:42:52,050 --> 00:42:55,240
but they called, canceled it out.
1016
00:42:55,240 --> 00:42:56,910
There was one at Microsoft,
1017
00:42:56,910 --> 00:43:00,500
which was actually the
most interesting one.
1018
00:43:00,500 --> 00:43:03,810
I had one also in California,
which was kind of interesting
1019
00:43:03,810 --> 00:43:06,790
because we have collaboration
with people at NASA,
1020
```

```
00:43:06,790 --> 00:43:10,220
but then I'd be working
mostly on developing further
1021
00:43:10,220 --> 00:43:12,680
the algorithms that I
learned during my PhD.
1022
00:43:12,680 --> 00:43:15,360
At Microsoft, I would've
been applying the algorithm
1023
00:43:15,360 --> 00:43:17,080
I developed during my
PhD on WeWork programs.
1024
00:43:17,080 --> 00:43:19,720
That was extremely exciting for me,
1025
00:43:19,720 --> 00:43:21,540
but I wouldn't have learned
1026
00:43:23,130 --> 00:43:24,780
something really new,
1027
00:43:24,780 --> 00:43:26,410
would have been mostly application.
1028
00:43:26,410 --> 00:43:27,670
Whereas here at Perimeter,
1029
00:43:27,670 --> 00:43:30,870
I would have enlarged my research interest
1030
00:43:30,870 --> 00:43:34,600
to include machine learning
and neural networks.
1031
00:43:34,600 --> 00:43:38,990
```

So that is basically the reason why I chose to come to PI.

1032
00:43:38,990 --> 00:43:41,163
And I don't regret that at all.
1033
00:43:42,180 --> 00:43:44,390

- And Estelle, now at Perimeter,

1034
00:43:44,390 --> 00:43:46,510 your title is Research Scientist,

1035
00:43:46,510 --> 00:43:48,290 but when you first came here,

1036
00:43:48,290 --> 00:43:51,010
you had the title of
a post-doctoral fellow
1037
00:43:51,010 --> 00:43:54,894
under the name Francis
Kofi Allotey Fellowship.
1038
00:43:54,894 --> 00:43:57,370
Can you tell us a little
bit about this fellowship
1039
00:43:57,370 --> 00:43:59,120
and how it was named?
1040
00:43:59,120 --> 00:44:01,930

- So Francis Kofi Allotey,

1041
00:44:01,930 --> 00:44:06,120 unfortunately he passed away about five years ago.

1042
00:44:06,120 --> 00:44:10,840
He was really a monument

```
of an African scientist
1043
00:44:10,840 --> 00:44:15,580
who literally inspired and
trained generations of physicists
1044
00:44:15,580 --> 00:44:17,640
on the African continent.
1045
00:44:17,640 --> 00:44:21,510
So he actually did a graduate degree
1046
00:44:21,510 --> 00:44:23,940
at the Imperial College London
1047
00:44:23,940 --> 00:44:27,450
under the Nobel Prize Winner, Abdus Salam,
1048
00:44:27,450 --> 00:44:29,300
who later on created
1049
00:44:29,300 --> 00:44:32,000
this famous, the Abdus
Salam International Center
1050
00:44:32,000 --> 00:44:33,890
for Theoretical Physics.
1051
00:44:33,890 --> 00:44:35,480
And then he did his PhD
1052
00:44:35,480 --> 00:44:37,890
at Princeton under Robert Oppenheimer.
1053
00:44:37,890 --> 00:44:40,550
- He did his PhD with Robert Oppenheimer.
1054
00:44:40,550 --> 00:44:43,800
```

- Yeah, so he was the first Ghanaian

1055
00:44:43,800 --> 00:44:44,950
to do almost everything,
1056
00:44:44,950 --> 00:44:48,490
the first Ghanaian to earn a
PhD in mathematical physics,
1057
00:44:48,490 --> 00:44:49,740
the first full professor
1058
00:44:49,740 --> 00:44:52,580
in mathematical physics in Ghana.
1059
00:44:52,580 --> 00:44:55,110
And as far as research is concerned,
1060
00:44:55,110 --> 00:44:59,380
he is mostly known for
this Allotey formalism,
1061
00:44:59,380 --> 00:45:03,570
which is basically a way
to detect soft x-rays
1062
00:45:03,570 --> 00:45:08,510
in material like lithium or other alkaline materials.

1063
00:45:08,510 --> 00:45:11,260
And yeah, so he kind of, I mean, he has
1064
00:45:11,260 --> 00:45:14,960
a single authored paper on
that, which is pretty neat.
1065
00:45:14,960 --> 00:45:17,490
And he got, I think, a medal for that.

1066
00:45:17,490 --> 00:45:21,380
But beside his research
contribution he had,
1067
00:45:21,380 --> 00:45:26,380
he was member of a lot
of international bodies.
1068
00:45:26,610 --> 00:45:28,660
He created, was one of the founding member
1069
00:45:28,660 --> 00:45:30,860
of the African Physical Society.
1070
00:45:30,860 --> 00:45:33,007
He was a board member at ICTP
1071
00:45:33,007 --> 00:45:35,300
and a lot of other institutions.
1072
00:45:35,300 --> 00:45:38,500
And he did a lot of work as well in Ghana,
1073
00:45:38,500 --> 00:45:40,670
like creating institutes
1074
00:45:40,670 --> 00:45:44,540
and fostering like
science in the continent.
1075
00:45:44,540 --> 00:45:47,130
So it was quite an honor for me
1076
00:45:47,130 --> 00:45:50,193
to have a fellowship named after him,
1077
00:45:51,500 --> 00:45:55,420

```
almost more than my
shoulders could bear, right?
1078
00:45:55,420 --> 00:46:00,280
But it was good also for
people in the West to see that,
1079
00:46:00,280 --> 00:46:02,220
because typically you're not familiar
1080
00:46:02,220 --> 00:46:03,397
with that kind of a name.
1081
00:46:03,397 --> 00:46:06,700
You think more like Einstein,
1082
00:46:06,700 --> 00:46:08,890
Dirac, Schrodinger,
1083
00:46:08,890 --> 00:46:12,580
but it's good to see that
we also have, if you want,
1084
00:46:12,580 --> 00:46:16,100
we can groom up top class scientists.
1085
00:46:16,100 --> 00:46:17,890
So to how did I come up with the name?
1086
00:46:17,890 --> 00:46:21,260
So when I was coming to PI,
Neil Turok actually gave me
1087
00:46:21,260 --> 00:46:23,420
the choice, interestingly enough,
1088
00:46:23,420 --> 00:46:26,570
to choose which name I wanted.
```

1089
00:46:26,570 --> 00:46:28,363
And yeah, I chose him.
1090
00:46:29,410 --> 00:46:32,690

- Now, you've kind of
expanded this set of tools
1091
00:46:32,690 --> 00:46:34,030
that you have through your postdoc.
1092
00:46:34,030 --> 00:46:35,210
And now you're getting to work
1093
00:46:35,210 --> 00:46:38,430
on maybe some of these
real-world applications.
1094
00:46:38,430 --> 00:46:41,320
And I really liked the
thing you said earlier
1095
00:46:41,320 --> 00:46:43,870
about how often in papers
academics are claiming
1096
00:46:43,870 --> 00:46:45,750
that their methods could be applicable
1097
00:46:45,750 --> 00:46:48,830
to all of these potential,
huge, real-world problems,
1098
00:46:48,830 --> 00:46:51,640
but maybe people don't
always really put the effort
1099
00:46:51,640 --> 00:46:52,473
into solving those.

1100
00:46:52,473 --> 00:46:55,370
And it seems like that's really what you're trying to do now

1101
00:46:55,370 --> 00:46:57,340
in your work, which is really impressive.
1102
00:46:57,340 --> 00:46:59,920
And I'm just curious
what other real problems
1103
00:46:59,920 --> 00:47:01,713
you have in mind to look at next?
1104
00:47:02,720 --> 00:47:05,213

- Oh yeah, maybe not to look at next.

1105
00:47:05,213 --> 00:47:08,190
Kind of the biggest problem
I have in mind to solve
1106
00:47:08,190 --> 00:47:09,163
is protein folding.
1107
00:47:10,190 --> 00:47:11,560

- Protein folding?
- Yes.

1108
00:47:11,560 --> 00:47:13,780

- What is protein folding (chuckles)?

1109
00:47:13,780 --> 00:47:16,900

- So basically a protein
to be functioning,
1110
00:47:16,900 --> 00:47:19,850
it has to have a certain conformation.
1111

```
00:47:21,020 --> 00:47:24,660
It can take millions
different conformation.
1112
00:47:24,660 --> 00:47:26,330
When you're doing protein design,
1113
00:47:26,330 --> 00:47:29,687
you need to find a
configuration white box.
1114
00:47:29,687 --> 00:47:32,999
They call it like when
the protein is native,
1 1 1 5
00:47:32,999 --> 00:47:36,480
in its native state or
in its folded state.
1116
00:47:36,480 --> 00:47:39,317
And usually it starts
from an unfolded state.
1117
00:47:39,317 --> 00:47:42,009
And the path through the folded state
1118
00:47:42,009 --> 00:47:43,840
is like you going through the Himalayas,
1119
00:47:43,840 --> 00:47:46,450
is a very, very hard path.
- Peaks and valleys?
1120
00:47:46,450 --> 00:47:48,640
- Exactly, exactly,
1121
00:47:48,640 --> 00:47:51,680
with a lot of like local minimal saddle points.
```

1122
00:47:51,680 --> 00:47:54,223
It's very hard, and not
only is it a hard problem,
1123
00:47:54,223 --> 00:47:57,210
it's very relevant, drug design
1124
00:47:57,210 --> 00:48:00,313
to help us like have better drugs
1125
00:48:00,313 --> 00:48:02,400
and help in the health sector.
1126
00:48:02,400 --> 00:48:06,150
So this is also, it's
having a very strong impact,
1127
00:48:06,150 --> 00:48:08,200
but it's also very hard to solve.
1128
00:48:08,200 --> 00:48:11,310
So this is one of the problems that I'm thinking.

1129
00:48:11,310 --> 00:48:15,010
I know that the approach
we are having now is
1130
00:48:15,010 --> 00:48:18,160
really to develop state of optimization algorithms,

1131
00:48:18,160 --> 00:48:20,610
that of course, in the company right now
1132
00:48:20,610 --> 00:48:23,100
we apply it in the financial domain,
1133

```
00:48:23,100 --> 00:48:26,030
but that we can easily
export to other domains,
1134
00:48:26,030 --> 00:48:27,680
like in the domain of protein folding
1135
00:48:27,680 --> 00:48:30,150
where the only subroutine or function
1136
00:48:30,150 --> 00:48:33,210
we will have to change
is just the Hamiltonian.
1137
00:48:33,210 --> 00:48:37,330
But then we will need to
have domain knowledge.
1138
00:48:37,330 --> 00:48:40,310
And how do you write the
protein folding Hamiltonian?
1139
00:48:40,310 --> 00:48:44,440
And that actually is not
a minimalistic model,
1140
00:48:44,440 --> 00:48:45,590
is not an easy model,
1141
00:48:45,590 --> 00:48:50,050
but it's really a model
of a real-world model.
1142
00:48:50,050 --> 00:48:53,300
I cannot; you really
need somebody who works
1143
00:48:53,300 --> 00:48:55,000
in either quantum chemistry
```

1144
00:48:55,000 --> 00:48:59,200
or biotechnological
sector and things to be.
1145
00:48:59,200 --> 00:49:00,470

- Just to see if I'm understanding,

1146
00:49:00,470 --> 00:49:01,810
right now when you're working,
1147
00:49:01,810 --> 00:49:03,910
Behnam, your co-founder
1148
00:49:03,910 --> 00:49:06,580
is kind of bringing this
expertise of the finance side.
1149
00:49:06,580 --> 00:49:07,840
So you would kind of need
1150
00:49:07,840 --> 00:49:10,386
someone analogous to Behnam for this
1151
00:49:10,386 --> 00:49:12,380
protein folding problem.

- Exactly, definitely.

1152
00:49:12,380 --> 00:49:15,710
So we even talked about that with Behnam,
1153
00:49:15,710 --> 00:49:20,140
that once we will be able to create value
1154
00:49:20,140 --> 00:49:22,730
with those algorithms, we start exploring
1155
00:49:22,730 --> 00:49:25,863
what we call in business
jargon other verticals.
1156
00:49:26,710 --> 00:49:29,610

- Well, it seems like there's
a lot of potential options
1157
00:49:29,610 --> 00:49:32,080
for the future, and I'm
really excited to see
1158
00:49:32,080 --> 00:49:34,277
what you're gonna optimize next.
1159
00:49:34,277 --> 00:49:35,660
- Thanks.

1160
00:49:35,660 --> 00:49:37,300

- Thanks for chatting with us today.

1161
00:49:37,300 --> 00:49:38,700 It was really fun.

1162
00:49:38,700 --> 00:49:39,831

- My pleasure.

1163
00:49:39,831 --> 00:49:42,414
(upbeat music)
1164
00:49:43,510 --> 00:49:46,300

- Thanks so much for stepping inside the Perimeter.

1165
00:49:46,300 --> 00:49:49,420
Be sure to subscribe so you don't miss a conversation.

1166
00:49:49,420 --> 00:49:52,480
We've interviewed a lot of
really brilliant scientists

1167
00:49:52,480 --> 00:49:55,570
whose research spans from
the quantum to the cosmos.
1168
00:49:55,570 --> 00:49:58,080
And we can't wait for you to hear more.
1169
00:49:58,080 --> 00:49:59,390
And if you like what you hear,
1170
00:49:59,390 --> 00:50:01,070
please give us a rating or a review
1171
00:50:01,070 --> 00:50:03,470
wherever you get your podcasts.
1172
00:50:03,470 --> 00:50:06,943
Great science is for everyone,
so help us spread the word.

