Computational Spectroscopy of Quantum Field Theories

Quantum field theories play an important role in many condensed matter systems for their description at low energies and long length scales. In 1+1 dimensional critical systems the energy spectrum and the spectrum of scaling dimensions are intimately related in the presence of conformal symmetry. In higher space-time dimensions this relation is more subtle and not well explored numerically. In this talk we motivate and review our recent effort to characterize 2+1 dimensional quantum field theories using computational techniques 2+targetting the energy spectrum on a spatial torus. We discuss several examples ranging from the O(N) Wilson Fisher theories and Gross-Neveu-Yukawa theories to deconfinement- confinement transitions in the context of topological ordered systems. We advocate a phenomenological picture that provides insight into the operator content of the critical field theories.

Event Type: 
Scientific Area(s): 
Event Date: 
Wednesday, March 14, 2018 - 14:00 to 15:30
Space Room
Room #: