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Appetizer: a problem in point-set topology
Let X be a compact Hausdorff space.

Definition
A valuation on X is a map [0, 1]X → [0, 1] that assigns to every
continuous function f : X → [0, 1] a number v(f ) ∈ [0, 1] such that

v(g ◦ f ) = g(v(f ))

for all g : [0, 1]→ [0, 1].

I Every point x ∈ X induces a valuation via v(f ) := f (x).
I Basic idea: a valuation is a consistent assignment of values to all

functions, behaving like evaluation at a point.

Problem
Does every valuation arise from a point?
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Appetizer: a problem in point-set topology

Problem
Does every valuation arise from a point?

I Interpretation: functions are in bijection with consistent assignments
of values to all (neighbourhoods of) points, and this expresses the
locality of functions. Dually, a positive answer to the question
would establish a bijection between points and valuations, resulting
in a sort of “colocality” of points.

I So far, we have been able to show this with the unit square [0, 1]2 in
place of [0, 1].

I This is a crucial ingredient in the technical development of almost
C*-algebras.
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Fundamentals of C*-algebra theory

Definition
A unital C*-algebra is a Banach space (A, || · ||) equipped with a
multiplication

· : A× A→ A

and an antilinear map ∗ : A→ A such that
I · is associative and has a unit 1 ∈ A;
I ||ab|| ≤ ||a|| ||b||;
I (ba)∗ = a∗b∗;
I the C*-identity

||a∗a|| = ||a||2

holds.

I In the following, all C*-algebras will be assumed unital.
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Fundamentals of C*-algebra theory

I C*-algebra theory is a blend of algebra and analysis that is much
more than the union of its parts.

I Among the fundamental results are:

Theorem (Gelfand duality)
Every commutative C*-algebra is isomorphic to C(X ) for some compact
Hausdorff space X . In fact, the functor C implements an equivalence of
categories

cC∗alg1
� // CHaus.

Theorem (GNS representation)
Every C*-algebra is a C*-subalgebra of B(H) for some Hilbert space H.

I These theorems also showcase the fundamental examples of
C*-algebras: C(X ) and B(H).
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Where do C*-algebras come from?

I The notion of group formalizes symmetries and how symmetries
compose. This motivates the axioms of groups.

I But what do C*-algebras formalize? By what interpretation are the
axioms motivated?

I Possible answer: C*-algebras come up as the mathematical
structures modelling quantum mechanics and quantum field
theory.

I Hence one can try to motivate the C*-algebra axioms in terms of
operational considerations in quantum physics.

I However, this is very challenging: not even the physical meaning of
the multiplication is clear!

I We try to improve on this by attempting to reaxiomatize
C*-algebras. Currently only partial results.
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Measurements

I On every physical system, one can conduct lots of measurements
taking values in different spaces X .

I So let’s try to model a physical system in very basic terms: assign to
every X ∈ CHaus a set M(X ), which is the set of measurement on
the system with values in X .

I For every continuous function f : X → Y , we should have a function

M(f ) : M(X ) −→ M(Y )

that turns every measurement with values in X into one with values
in Y via post-processing along f .

I Hence M should be a functor M : CHaus→ Set.
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Measurements
I Hence M should be a functor M : CHaus→ Set.

Example
For a system described by quantum physics in terms of a C*-algebra A,
we have

MA(X ) := { ∗-homomorphisms C(X )→ A }

The action of MA on continuous functions captures and generalizes
functional calculus!

I Idea: reconstruct this kind of example purely in terms of M.
I To this end, impose certain additional conditions on M.
I For example for X ,Y ∈ CHaus, there is a canonical map

M(X × Y ) −→ M(X )×M(Y ).

I We would like this map to be injective: every two measurements can
be combined to a joint measurement in at most one way.
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I Hence M should be a functor M : CHaus→ Set.

I We furthermore require certain sheaf conditions, such as: with ©
the unit disk, the α ∈ M(X ) should be in bijection with families
(βf )f :X→© where βf ∈ M(©) and

M(g)(βf ) = βg◦f

for all g :©→©.

I This sheaf condition “explains” why measurements in physics are
numerical: a measurement with values in some X is equivalent to a
sufficient number of measurements with values in ©.

I A positive answer to the appetizer problem would let us replace ©
by [0, 1] here.

I If M satisfies the sheaf conditions, we call it a sheaf.
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A piecewise C*-algebra is a set A equipped with
I a reflexive and symmetric relation y ⊆ A× A. If αyβ, we say that
α and β commute;

I binary operations +, · : y→ A;
I a scalar multiplication · : C× A→ A;
I distinguished elements 0, 1 ∈ A;
I an involution ∗ : A→ A;
I a norm || − || : A→ R;

such that every C ⊆ A of pairwise commuting elements is contained in
some C̄ ⊆ A which is a commutative C*-algebra.

I Example: the normal elements of any C*-algebra form a piecewise
C*-algebra.
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Reconstructing piecewise C*-algebras
Theorem

A sheaf M arises from a piecewise C*-algebra if and only if the canonical
map

M(©×©) −→ M(©)×M(©)

is injective. In fact, there is an equivalence of categories between such M
and piecewise C*-algebras.

I However, piecewise C*-algebras only capture the commutative
aspects of C*-algebra theory.

I In particular, we cannot reconstruct the multiplication of
noncommuting elements, and not even the addition!

I From the physical perspective, what is missing is dynamics: for
every h = h∗ ∈ A,

a 7→ e−ith a eith

is a 1-parameter group of inner automorphisms of A.
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I From the physical perspective, what is missing is dynamics: for
every observable h = h∗ ∈ A,

a 7−→ e−ith a eith

is a 1-parameter group of inner automorphisms of A.

I This is one of the central features of quantum physics!

I Its construction proceeds in two steps:
I exponentiate h. As functional calculus, this is captured by M.
I conjugating by the resulting unitary. This is not captured by M!

I Hence we axiomatize the action of inner automorphisms as an extra
piece of structure.
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Almost C*-algebras

Definition

An almost C*-algebra is a sheaf M : CHaus→ Set together with a
self-action, which is a map

a : M(T) −→ Aut(M)

such that if u, v ∈ M(T) commute, then
I a(ν)(τ) = τ ,
I a(ντ) = a(ν)a(τ).

I The structure of a self-action is physically well-motivated, where the
first equation seems related to Noether’s theorem.

I Every C*-algebra carries the structure of an almost C*-algebra.
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Almost C*-algebras

Problem

Is the category of almost C*-algebras equivalent to the category of
C*-algebras?

This question has two parts:

I Is every almost C*-algebra is isomorphic to a C*-algebra? This is
wide open.

I For A,B ∈ C∗alg1, is every almost ∗-homomorphism A→ B already
a ∗-homomorphism? Here, we know:

Theorem
If A is a von Neumann algebra, then every almost ∗-homomorphism
A→ B is a ∗-homomorphism.
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Almost C*-algebras

Problem
Is the category of almost C*-algebras equivalent to the category of
C*-algebras?

I If the answer is positive, we have axioms for C*-algebras with clearer
physical meaning.

I If the answer is negative, we can try to develop physical theories in
terms of almost C*-algebras as alternatives to existing theories
formulated in terms of C*-algebras. Could these be physically
realistic? (Almost certainly not.)
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