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Problem J

» Interpretation: functions are in bijection with consistent assignments
of values to all (neighbourhoods of) points, and this expresses the
locality of functions. Dually, a positive answer to the question
would establish a bijection between points and valuations, resulting
in a sort of “colocality” of points.

» So far, we have been able to show this with the unit square [0,1]? in
place of [0, 1].

» This is a crucial ingredient in the technical development of almost
C*-algebras.
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A unital C*-algebra is a Banach space (A, || - ||) equipped with a
multiplication
CAXA—=A
and an antilinear map * : A — A such that
» - is associative and has a unit 1 € A;
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v

v

v

1a*al| = |lal|?

holds.

\{

In the following, all C*-algebras will be assumed unital.
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» C*-algebra theory is a blend of algebra and analysis that is much
more than the union of its parts.

» Among the fundamental results are:

Theorem (Gelfand duality)

Every commutative C*-algebra is isomorphic to C(X) for some compact
Hausdorff space X. In fact, the functor C implements an equivalence of
categories

cC*alg; —— CHaus.

Theorem (GNS representation)
Every C*-algebra is a C*-subalgebra of B(H) for some Hilbert space H.

» These theorems also showcase the fundamental examples of
C*-algebras: C(X) and B(H).
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Where do C*-algebras come from?

» The notion of group formalizes symmetries and how symmetries
compose. This motivates the axioms of groups.

» But what do C*-algebras formalize? By what interpretation are the
axioms motivated?

» Possible answer: C*-algebras come up as the mathematical
structures modelling quantum mechanics and quantum field
theory.

» Hence one can try to motivate the C*-algebra axioms in terms of
operational considerations in quantum physics.

» However, this is very challenging: not even the physical meaning of
the multiplication is clear!

» We try to improve on this by attempting to reaxiomatize
C*-algebras. Currently only partial results.
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Example

For a system described by quantum physics in terms of a C*-algebra A,

we have
Ma(X) := { #-homomorphisms C(X) — A }

The action of M4 on continuous functions captures and generalizes
functional calculus!

» Idea: reconstruct this kind of example purely in terms of M.
» To this end, impose certain additional conditions on M.
» For example for X, Y € CHaus, there is a canonical map

M(X x Y) — M(X) x M(Y).

» We would like this map to be injective: every two measurements can
be combined to a joint measurement in at most one way.
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Measurements

» Hence M should be a functor M : CHaus — Set.

» We furthermore require certain sheaf conditions, such as: with O
the unit disk, the @ € M(X) should be in bijection with families
(Bf)f.x— where Br € M(O) and

M(g)(Br) = Bgor

forallg: O — O.

» This sheaf condition “explains” why measurements in physics are
numerical: a measurement with values in some X is equivalent to a
sufficient number of measurements with values in ().

» A positive answer to the appetizer problem would let us replace O)
by [0, 1] here.

» If M satisfies the sheaf conditions, we call it a sheaf.
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Definition (van den Berg & Heunen '10)

A piecewise C*-algebra is a set A equipped with

» a reflexive and symmetric relation 1L C A x A. If a 1L 3, we say that
« and [ commute;

> binary operations +, - : 1L — A;

» a scalar multiplication - : C x A — A;
» distinguished elements 0,1 € A;

» an involution * : A — A;

»anorm || —||: A= R;

such that every C C A of pairwise commuting elements is contained in
some C C A which is a commutative C*-algebra.

» Example: the normal elements of any C*-algebra form a piecewise
C*-algebra.
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v

From the physical perspective, what is missing is dynamics: for
every observable h = h* € A,

3 e—/th 3 elth

is a 1-parameter group of inner automorphisms of A.
» This is one of the central features of quantum physics!

» lts construction proceeds in two steps:

» exponentiate h. As functional calculus, this is captured by M.

» conjugating by the resulting unitary. This is not captured by M!

» Hence we axiomatize the action of inner automorphisms as an extra
piece of structure.
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An almost C*-algebra is a sheaf M : CHaus — Set together with a
self-action, which is a map

a: M(T) — Aut(M)
such that if u,v € M(T) commute, then

» a(v)(r) =T,

» a(vr) = a(v)a(7).

The structure of a self-action is physically well-motivated, where the
first equation seems related to Noether's theorem.

v

v

Every C*-algebra carries the structure of an almost C*-algebra.
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Is the category of almost C*-algebras equivalent to the category of
C*-algebras?

This question has two parts:

» |Is every almost C*-algebra is isomorphic to a C*-algebra? This is
wide open.

» For A, B € C*alg;, is every almost *-homomorphism A — B already
a #-homomorphism? Here, we know:

Theorem
If Ais a von Neumann algebra, then every almost x-homomorphism
A — B is a x-homomorphism.
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Almost C*-algebras

Problem
Is the category of almost C*-algebras equivalent to the category of
C*-algebras?

» If the answer is positive, we have axioms for C*-algebras with clearer
physical meaning.

» If the answer is negative, we can try to develop physical theories in
terms of almost C*-algebras as alternatives to existing theories
formulated in terms of C*-algebras. Could these be physically
realistic? (Almost certainly not.)



