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These notes introduce the formalism of the path-integral or “sum-over-histories”. Al-

though the basic ideas are more general, we limit ourselves here to the nonrelativistic

case of eternal point particles.

Histories and Events

We will consider the motion of a nonrelativistic point particle (or particles) and refer to

its world line (or the collection of their world lines) as its history, denoting an arbitrary

history by γ. Classical physics takes the point of view that each possible reality corre-

sponds to a single such history γ. An event (like the event “it is raining outside”) then

corresponds to a set A of histories such that the event happens if and only if γ belongs

to A, i.e. if and only if γ ∈ A. ⋆

The dynamical laws and the predictions that result from them then tell us something

about what the actual γ will do. But the laws never pin γ down fully. Even in a

deterministic theory like classical Hamiltonian mechanics, they fail to specify the initial

conditions; and in a stochastic theory like the theory of Brownian motion, the laws never

furnish more than probabilities.

Now let us turn to the quantum world. From the histories standpoint, histories and

events are still the basic concepts, but their relationship with reality is less straightforward

than it was classically. The problem of sorting out this relationship, one might say,

is precisely what the problem of quantum foundations is all about. The concept of

“anhomomorphic coevent” gives rise to a particular proposal about how this is to be done,

⋆ As in the case of rain, the events of interest will usually consist of all histories that

possess some property, and we will often use the same symbol to denote this subset of

history-space and the property that selects it. For another example of an event, think of

all the worldlines that pass through a given spacetime region.
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according to which reality, rather than being a single history, is a kind of polynomial in

histories. In the simplest case, it is simply a set of histories. However, the purpose of

these notes is not to describe anhomomorphic coevents. Rather, we will stick to the path-

integral formalism itself, aiming to show how quantum mechanics looks when presented

in this way, and where familar mathematical constructions like state-vectors, operators

and the Schrödinger equation come from.

The quantum measure

The mathematics of path-integrals is much closer to the mathematics of stochastic pro-

cesses than it is to that of Hamiltonian mechanics. For a classical stochastic processs,

the dynamics is specified by a probability measure µ on the space Ω of all histories. This

measure assigns to every suitable subset A ⊆ Ω a positive real number µ(A) ∈ [0, 1] which

is interpreted as the probability that event A actually happens. (Recall that the technical

term event denotes a subset A ⊆ Ω.) In the quantal generalization of this framework,

the dynamics is specified by a generalized measure µ which assigns to the event A ⊆ Ω a

positive real number, µ(A) ≥ 0.

In certain circumstances, one knows from experience that µ(A) can still be inter-

preted as the probability that event A happens. This is the meaning of the “Born rule”

when A represents a “pointer reading” or macroscopic measurement outcome. But in

general such a probability interpretation is not possible, since µ does not respect the

additivity condition µ(A ⊔ B) = µ(A) + µ(B). Instead µ has to be used in a less direct

manner to make predictions, and the required rules are still not very clear. It seems fair

at a minimum to assert that events A with µ(A) = 0 (or very tiny) are “precluded” in

the sense that “for all practical purposes”, the event will not occur.

The basic formula that defines µ(A) in nonrelativistic quantum mechanics is the

following.

µ(A) =

∫

γ∈AT

dν(γ)

∫

γ∈AT

dν(γ) eiS(γ)−iS(γ) δ(γ(T ), γ(T )). (1)

Here, AT denotes the set of all histories that can be derived from elements of A by trun-

cation at time T , γ(t) denotes the location (in configuration space Q) of γ at time t, and
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the “truncation time” t = T can be chosen freely, as long as it is late enough for it to be

decided by then whether or not γ ∈ A. In equation (1) there is also implicit some specifi-

cation of initial conditions for γ. Except in a cosmological context, these will normally be

given by an initial wave function — in effect a complex endpoint-contribution to S(γ) —

possibly in combination with the condition that γ belong to some specified subset of Ω.

Notice that the integration variables γ and γ in (1) are completely independent dummy

variables.

In equation (1), S(γ) is called the action-functional, and it takes the form S(γ) =
∫
dt L(t), where (for a single, nonrelativistic particle referred to some chosen reference

frame)

L(t) =
mγ̇(t)2

2
− V (γ(t), t), (2)

m being the particle’s mass and V (q, t) the potential. Also, eiS(γ) is called the “ampli-

tude” of γ and dν(γ) is called the integration-measure or measure-factor. [This must not

be confused with the quantum measure µ itself. Indeed, the analogy with the Wiener

process suggests that in a rigorous formulation, neither dν(γ) nor eiS will be defined

separately, and only their product will have meaning.]

We note without proof that µ obeys the sum rule,

µ(A ⊔B ⊔ C) − µ(A ⊔B) − µ(B ⊔ C) − µ(A ⊔ C) + µ(A) + µ(B) + µ(C) = 0

where ⊔ is disjoint union. This sum rule implies that µ(A) can always be written as a

double integral
∫

γ∈A
dν(γ)

∫
γ∈A

dν(γ) as in (1). It does not imply that the integrand

takes the specific form appearing in (1), however.

In fact, even in nonrelativistic quantum mechanics, the form (1) requires generaliza-

tion when non-bosonic identical particles are involved, and in certain other situations. *

* In the case of indistinguishable particles, one can sometimes circumvent the generaliza-

tion by attaching artificial labels to the particles, thereby rendering them formally distin-

guishable. The effect of the statistical phase-factors is then absorbed into a symmetry-

condition on the multi-particle wave function, this being the approach followed, implicitly,

in most textbooks.
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In such cases, an additional phase-factor χ(γ, γ) must be inserted into (1) which can de-

pend on the topological class to which the combined path γ ∪ γ belongs. The amplitude

thus becomes a function of γ and γ jointly, rather than a product of separate amplitudes

for γ and γ. A similar viewpoint is helpful in connection with Galilean invariance and

with motion in a magnetic field.

Wave functions and states

It is a feature of (1) that µ(A) can be expressed as

µ(A) =

∫
|ψA(q, T )|2dq

where

ψA(q, T ) =

∫

γ∈AT

dν(γ) eiS(γ) δ(q, γ(T )) . (3)

In this way, ψ summarizes everything about the subset A that is needed to compute µ(A).

It also summarizes everything about A that is needed to compute the relative measure

of some future subset B. In other words, if B is some condition on the portion of γ lying

to the future of some time T0, and if the condition A lies to the past of T0, then we can

compute µ(A ∩B) knowing nothing about A other than the ψA to which it gives rise at

time T0. We have in fact,

µ(B ∩A) =∫

γ∈B
T1

T0

dν(γ)

∫

γ∈B
T1

T0

dν(γ)eiS(γ)−iS(γ)δ(γ(T1), γ(T1))ψA(γ(T0), T0)ψA(γ(T0), T0)
∗, (4)

where T1 is some truncation time to the future of the “support” [see equation (7)] of B

and BT1

T0
:= {γ : [T0, T1]→Q | γ satisfies B}. In this way, ψA(·, T0) serves as an initial

condition for predictions to the future of T0. Thus, ψ provides both a summary of the

past and an initial condition for the future. It is inherent in the form of (1) that such

summaries are possible, but there is no reason for this possibility to persist in more

general forms of quantum mechanics. If it did not persist, then a wave function like

ψ(q, t) would no longer be useful.
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For each time t (or more generally for each spacelike hypersurface), the possible wave

functions ψ(·, t) form a Hilbert space that we will call Ht, the inner product being given

by

< ψ2|ψ1 >=

∫
dq ψ2(q, t)

∗ ψ1(q, t) . (5)

Notice that there is a separate Hilbert space for each time (or hypersurface) t.

Functionals, propagators and operators

Let O be a function that attaches a complex number O(γ) to each history γ. We will

follow tradition in calling O a functional in reference to the fact that its argument γ, a

trajectory, can also be represented as a function. By writing

suppO ⊆ (t0, t1) or t0 < suppO < t1 (6)

we mean that O(γ) depends only on the portion of γ between times t0 and t1. We

similarly write

suppA ⊆ (t0, t1) (7)

to mean that the property defining the event A refers only to the portion of γ between

times t0 and t1. This is a special case of (6) if we take O = χA to be the characteristic

function of A ⊆ Ω, i.e. the function defined by χA(γ) = 1 if γ ∈ A, χA(γ) = 0 if γ /∈ A.

For given times t1 ≤ t2 and a functional O with support between t1 and t2, we can

define an operator UO(t2, t1) :Ht1
→Ht2

by the condition

ψ2 = UO(t2, t1)ψ1 ⇐⇒ ψ2(q2, t2) =

∫

γ∈Ω
t2
t1

dν(γ)O(γ) eiS(γ) δ(q2, γ(t2)) ψ1(γ(t1)) (8)

Here Ωt2
t1

is the set of all partial (or “truncated”) paths running between times t1 and t2.

When O(γ) ≡ 1 we write UO as just plain U and call it the “propagator”. When O = χA

for some event A, we write UO as UA and call it the “conditional propagator”. Clearly

U(t2, t1) gives the propagation of the wave function ψA in (3) for times subsequent to the

support of A: ψ(·, t2) = U(t2, t1)ψ(·, t1). It follows in particular that U(t2, t1) must be

unitary in order to guarantee that the quantum measure (1) is well-defined, independently

of truncation time T (cf. (10) below). Actually, all that is needed for this is that U∗U = 1,
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however in ordinary quantum mechanics we also have UU∗ = 1, so that U−1 exists and

is equal to the adjoint U∗. Then for s < t, we can set U(s, t) := U(t, s)−1. It follows

immediately that

U(r, s)U(s, t) = U(r, t) (9)

for any three times r, s, t, whether they are in sequence or not.

Now let ψ0 ∈ Ht0
be a summary of the past, t < t0, in the sense of (3) and (4), and

let B ⊆ Ω be such that suppB ⊆ (t0, t1). If we relativize our quantum measure µ to

the initial condition ψ0 then we can express µ(B) in terms of the conditional propagator

UB(t1, t0) by a formula that follows directly from the definitions:

µ(B) = < ψ0,UB(t1, t0)
∗ UB(t1, t0)ψ0 > . (10)

It follows from (9) and (10) that µ(B) is independent of t1 as long as t1 > suppB.

In much the same manner, we can also define an operator Ô associated with a general

path-functional O. Given

t0 < suppO < t1, (11)

we put, for arbitrary t,

Ôt = U(t, t1)UO(t1, t0)U(t0, t). (12)

It is clear that Ôt, defined in this way, is independent of the choices of t0 and t1, provided

that they respect (11). I will also write Ô as ‘op(O)’ when the expression O is too long

to accept a “hat” comfortably.

The basic idea of these definitions is that Ô expresses the effect on a wave function of

re-weighting the path integral with a path-dependent factor O(γ); however, with ψ = ψA

given by (3), the effect of such a re-weighting will given by (12) only if, for some τ ,

suppA < τ < suppO.

In this situation, we evidently can write also, assuming τ < t0 < suppO < t1,

Ôt1
ψA(q1, t1) =

∫

γ∈Ω
t1
t0

dν(γ)O(γ)eiS(γ)δ(q1, γ(t1))ψA(γ(t0), t0) (13)
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Notice in all this that the subscript t in Ôt refers to the Hilbert space Ht in which

Ôt acts; it has nothing to do with the time at which O itself is defined. Normally we will

be able to omit this t subscript by working within a given “picture”, as explained in the

next section.

An important connection between time-order and operator-order follows from the

definitions and equation (9):

Ordering rule If there exists a time τ such that

suppO1 > τ > suppO2 ,

then

Ô1O2 = Ô1Ô2

where the equation just written is short for (Ô1O2)t = (Ô1)t(Ô2)t, t being arbitrary.

By arbitrarily coordinatizing the configuration space at each moment of time (there is

in general no natural notion of “time-independent coordinatization”, example: Galilean

invariance) we can introduce the so called position operator. Pick some t and let the

functional O(γ) be defined as the coordinate q(t) of γ at time t. [We might express this

more pedantically as O(γ) = q(t)(γ(t))]. Then we define ( q̂(t) )s to be the operator Ôs;

in other words we set

( q̂(t) )s := ( q̂(t) )s . (14)

Of course, q̂ is really an n-tuple of operators if the configuration space has dimension

n. It is immediate from the definitions that ( q̂(t) )t acts in Ht by multiplying ψ(q, t) by

q. (You should prove this to yourself if it’s not obvious to you.) For t 6= s on the other

hand, ( q̂(t) )s has no such simple description.

Heisenberg picture, Schrödinger picture

The state vectors ψt that we have defined belong not to a single Hilbert space, but to

a whole family of them — one space Ht for each time t (or more generally for each

Cauchy surface Σ). Normally it is convenient to eliminate this multiplicity of spaces by

identifying the Ht with each other in order to obtain a single “global” Hilbert space H.
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Depending on how the identification is carried out, one obtains thereby one or another

“picture” (“Heisenberg”, “Schrödinger”, “Interaction”, . . . ). Notice in this connection

that the vectors ψt are in the first instance functions of position at a given time. Other

choices of basis for Ht are of course possible (momentum basis, energy basis, Fok basis

in field theory, etc.), but they appear as subsidiary to the position basis.

Perhaps the most natural identification spaces is that induced by U(t, s) itself, which

leads to the so called Heisenberg picture. Let ‘∼’ denote this equivalence relation:

ψt ∼ ψs ⇐⇒ ψt = U(t, s)ψs. Thanks to the unitarity of U , the resulting space H

of equivalence classes inherits a well-defined hermitian metric from the Ht. For ψt ∈ Ht,

let |ψt, t > denote cls(ψt), the equivalence class of ψt in H. Then our identification rule

can be expressed by

|ψ′, t′ > = |ψ, t >⇐⇒ ψ′ = U(t′, t)ψ (15a)

or equivalently

|U(t′, t)ψ, t′ >= |ψ, t > . (15b)

One advantage of the Heisenberg picture is that the operators Ôt defined in (12) act

consistently with (15) and therefore can be interpreted as a single operator acting in H,

namely the operator Ô (no more subscript) defined by

Ô|ψ, t >= |Ôtψ, t > (16)

The self-consistency of this definition should be clear diagrammatically. To check it in

formulas, we must show that |ψ′, t′ >= |ψ, t >⇒ Ô|ψ′, t′ >= Ô|ψ, t >. But from (12)

and (15a,b),

Ô|ψ′, t′ > = |Ôt′ψ
′, t′ >

= |U(t′, t1)UO(t1, t0)U(t0, t
′)ψ′, t′ >

= |UO(t1, t0)U(t0, t
′)ψ′, t1 >

= |UO(t1, t0)U(t0, t
′)U(t′, t)ψ, t1 >

= |UO(t1, t0)U(t0, t)ψ, t1 >

= |U(t, t1)UO(t1, t0)U(t0, t)ψ, t >

= |Ôtψ, t >

= Ô|ψ, t >
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as required.

Another convenient characterization of Ô follows from (8). With t0 < suppO < t1,

this characterization reads < ψ1, t1|Ô|ψ0, t0 >=< ψ1,UO(t1, t0)ψ0 > , or

< ψ1, t1|Ô|ψ0, t0 > =

∫

γ∈Ω
t1
t0

dν(γ) eiS(γ) ψ∗

1(γ(t1)) O(γ) ψ0(γ(t0)) . (17)

proof:

< ψ1, t1|Ô|ψ0, t0 > = < ψ1, t1|Ôt0
ψ0, t0 >

= < ψ1, t1|U(t0, t1)UO(t1, t0)ψ0, t0 >

= < ψ1, t1|UO(t1, t0)ψ0, t1 >

= < ψ1,UO(t1, t0)ψ0 > .

This last expression is a scalar product taken in Ht1
. Written out as an integral, it is

∫
dq1ψ1(q1)

∗ [UO(t1, t0)ψ0](q1)

=

∫
dq1ψ1(q1)

∗

∫
dν(γ)O(γ)eiS(γ)δ(q1, γ(t1))ψ0(γ(t0))

=

∫
dν(γ)O(γ)eiS(γ)ψ1(γ(t1))

∗ ψ0(γ(t0)) ,

as claimed. As an example, we can apply (17) to the position functional q(t) and obtain,

in view of (14) and for t0 < t < t1,

< ψ1, t1|q̂(t)|ψ0, t0 > =

∫
dν(γ)eiS(γ)ψ1(γ(t1))

∗ γ(t) ψ0(γ(t0)) .

Other pictures are available to the extent that there exist other ways to identify the

Ht than via the path integral itself. For example, in a given spacetime reference frame

we can identify the hypersurfaces t = constant by pure translation in the time direction,

giving rise to the so called Schrödinger picture. Such an identification is implicit in (2)

for example. Let us introduce the notation Ξ(t, t′) :Ht′ →Ht for this identification and

denote the resulting Hilbert space as HSchr. Clearly, a general functional O(γ) does not

induce a consistently defined operator in HSchr. However, in special cases one can derive

Schrödinger picture operators from suitable families of functionals. For example, if we
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choose our coordinates q(t) to be independent of time (in our chosen reference frame)

then the family of operators ( q̂(t) )t acts coherently in the Ĥt because

Ξ(t′, t) ( q̂(t) )t = ( q̂(t′) )t′ Ξ(t′, t) ,

whence it defines in HSchr the “Schrödinger position operator” q̂. The difference between

this operator and q̂(t) in the Heisenberg picture is that to define q̂(t), we held t fixed and

varied s in ( q̂(t) )s, whereas to define q̂ we vary both t and s, keeping t = s.

Henceforth, operators Ô without temporal subscripts will always be in the Heisenberg

picture, unless stated otherwise.

The equations of motion in operator form

In (17) let us take O = 1 and make a change of variables γ→ γ + δγ where δγ is a fixed

function vanishing at t1 and t0. This yields (since δγ(t1) = δγ(t0) = 0)

< ψ1, t1|ψ0, t0 >=

∫

γ∈Ω
t1
t0

dν(γ + δγ)eiS(γ+δγ)ψ1(γ(t1))
∗ψ0(γ(t0))

We now assume that the measure-factor dν(γ) is translation invariant in the sense that

dν(γ + δγ) = dν(γ). Expanding out eiS(γ+δγ) = eiS+iδS = eiS + i δS eiS then produces

0 =

∫
dν(γ) iδS eiS(γ)ψ1(γ(t1))

∗ψ0(γ(t0))

which, again by (17), says precisely that

< ψ1, t1|δ̂S|ψ0, t0 > = 0

whence δ̂S itself vanishes, since ψ0 and ψ1 are arbitrary. For our variation δγ, δS reduces

to

δS =

∫
δL(t)

δq(t)
δγ(t)dt (18)

whence, since δγ is also arbitrary, we have

̂δL(t)

δq(t)
= 0 (19)

10



Since δL
δq

is the quantity whose vanishing constitutes the classical equations of motion, we

can express (19) by saying that the classical equations of motion hold in operator form.

For our particle of mass m moving in the potential V ,

δL

δq
= −m

d2γ(t)

dt2
− V ′(γ(t), t)

so (19) becomes

m
d2

dt2
q̂(t) + ̂V ′(q(t), t) = 0, (20)

where, in accord with (14), we have used the definition q̂(t) = q̂(t). [As written, (19) is

in the Heisenberg picture, but we could free it from any picture by writing it as

( ̂δL(t)

δq(t)

)

s

= 0 . ] (21)

The canonical momentum conjugate to q(t)

Let γ→ γ+δγ as before, but now drop the assumption that δγ = 0 at the final endpoint.

We now have in place of (18), the “Noether identity”

δS =

∫ 2

1

δL

δq
δγdt+ p(t2)δγ(t2) , (22)

which serves as the definition of the momentum functional p(t). Working now with (8),

instead of the equivalent (17), and still taking O = 1, we find

ψ2(q2 + δγ(t2), t2) =

∫
dν(γ + δγ)eiS(γ+δγ)δ(q2 + δγ(t2), γ(t2) + δγ(t2))ψ1(γ(t1))

=

∫
dν(γ)[1 + iδS(γ)]eiS(γ)δ(q2, γ(t2))ψ1(γ(t1))

= ψ2(q2, t2) +

∫
dν(γ)iδS(γ)eiS(γ)δ(q2, γ(t2))ψ1(γ(t1))

or by (13),
∂ψ2(q2, t2)

∂q2
δγ(t2) = ( i ̂δS(γ) )t2

ψ2 . (23)

From (22) and (21) we have

δ̂S = p̂(t2)δγ(t2)

11



so that (23) reads
∂ψ2(q2, t2)

∂q2
δγ(t2) = i( p̂(t2) )t2

ψ2δγ(t2) ,

or
1

i

∂

∂q2
ψ2(q2, t2) = ( p̂(t2) )t2

ψ2 . (24)

This is the familiar fact that the momentum operator acts simply as differentiation with

respect to q. In the Heisenberg picture language, it can also be written (with t2 = t) as

p̂(t)|ψ, t >= |
1

i

∂ψ

∂q
, t > (25)

where we have defined p̂(t) := p̂(t) in analogy with (14). From this, or from (24), it

follows immediately that

[q̂(t), p̂(t)] = i . (26)

Notice that from the present point of view, this is a theorem, whereas more commonly

it is made an assumption (“canonical quantization”) and (25) is derived from it, as its

“Schrödinger representation”.

For the Lagrangian (2), or its obvious generalization to more than one particle, (22)

implies, as we know,

p(t) = mγ̇(t) (27)

(or pi(t) = miγ̇i(t) if γi(t) is the ith configuration coordinate at time t and mi is the mass

of the particle whose coordinate γi is). Thus we recover the familiar operator equation,

p̂(t) = p̂(t) = m̂̇γ(t) = m
d

dt
γ̂(t) = m

d

dt
q̂(t) (28)

A special case of (24) occurs if δγ is taken to be an overall spatial translation of all

the particles through a displacement δx (recall that γ in general comprises several world

lines). In that case (22) reduces to

δS2
1 =

∫
δL

δq
δγdt+ P (t2)δx2 (29)

where P is the total momentum, and (25) then implies that P̂ (t) acts by infinitesimal

spatial translation: it is the “generator of spatial translations at time t”. The final results

we want follow from extending these considerations to the case of time-translations.
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Further consequences of the Noether identity: the Schrödinger equation

When we generalize δγ to allow deformation in the time direction, the resulting Noether

identity yields an equation (the Schrödinger equation) describing the time dependence of

U(t, t0). For variety, and also to lighten the notational burden, let’s work this out for the

concrete Lagrangian (2), rather than in general.

Since we want to vary t as well as q it is useful to regard γ as a parameterized path,

whose parameter λ runs from 0 to 1. Then, writing γ(λ) ≡ (t(λ), q(λ)) ≡ (γt(λ), γq(λ)),

we have (with ṫ = dt/dλ, q̇ = dq/dλ)

S =

∫ 1

0

dλ

(
mq̇(λ)2

2ṫ
− V (γ(λ))ṫ

)

Taking the variation and integrating by parts as usual produces straightforwardly

δS =

∫ 1

0

dλ ṫ (−m
d2q

dt2
−
∂V

∂q
)δq +

∫ 1

0

[
dE

dλ
−
∂V

∂t

dt

dλ
]δt dλ+ p δq|10 −E δt|10

with

p = m
dq

dt

and

E =
m

2

(
dq

dt

)2

+ V (q, t) (30)

Now since we have already studied the effects of δq, we may as well isolate here the effect

of δt by setting δq(λ) = 0. (Of course, the meaning of δq = 0 is frame dependent; with

respect to a boosted frame, it would mean something different.) In addition, let’s take

δt(λ) to vanish everywhere except near the final endpoint of γ. Then

δS =

∫ 1

0

dλ[
dE

dλ
−
∂V

∂t

dt

dλ
]δt−E(1) δt(1) (31)

Proceeding as before, we have

ψ(q1, t1 + δt(1)) =

∫
dν(γ + δγ) eiS(γ+δγ) δ(γq(1), q1)

=

∫
dν(γ)

dν(γ + δγ)

dν(γ)
(1 + iδS) eiS(γ) δ(γq(1), q1)

=

∫
dν(γ) [1 + (

dν(γ + δγ)

dν(γ)
− 1)] (1 + iδS) eiS(γ) δ(γq(1), q1)

= ψ(q1, t1) +

∫
dν(γ)

[
(
dν(γ + δγ)

dν(γ)
− 1) + iδS(γ)

]
eiS(γ) δ(γq(1), q1)

13



or

∂ψ(q1, t1)

∂t1
δt(1) =

∫
dν(γ)

[
dν(γ + δγ)

dν(γ)
− 1 + iδS(γ)

]
eiS(γ) δ(γq(1), q1) (32)

Now δS(γ) in (31) has two terms, an integral or “bulk term” and a boundary term.

Let us assume that

J(γ) :=
dν(γ + δγ)

dν(γ)
− 1 (33)

(the Jacobian of our infinitesimal change of variables γ→ γ + dγ) also consists of two

such terms:

J(γ) =

∫ 1

0

dλ J(λ) δt(λ) + J1 δt(1) − J0 δt(0) (34)

We will see later to what extent this holds for the measure-factor dν(γ) appropriate to

“skeletonized histories”. Now let us define

O(γ) = J(γ) + iδS(γ),

so that the right hand side of (32) can be written as

∫
dν(γ)O(γ) eiS(γ) δ(γq(1), q1) . (35)

Given (34), we have for O(γ), with the help also of (31),

O(γ) =

∫ 1

0

dλ δt(λ)

[
J(λ) + i

(
dE

dλ
−
∂V

∂t

dt

dλ

)]
+ (J1 − iE(1)) δt(1) (36)

We come now to a subtle but crucial point. In (36) there is no term coming from the

initial endpoint, λ = 0, since we have taken δt to vanish there. If we also take δt(1) = 0,

then of course the left hand side of (32) and the boundary contribution to (36) both

vanish, whence the remaining integral term in (36) must vanish as well. Hence, since

δt(λ) is still free except at λ = 0, 1, the integrand itself must contribute zero to (32)

(which we could express as op(dE/dλ− (∂V/∂t)(dt/dλ) − iJ(λ)) = 0, an equation that

logically ought to work out to be conservation of energy in operator form). Without any

effect on the result, we may therefore replace O(γ) in (35) by

[J1 − iE(1)]δt(1),

14



whereupon (32) becomes

∂ψ(q1, t1)

∂t1
=

∫
dν(γ) [J1 − iE(1)] eiS(γ) δ(γq(1), q1) . (37)

Finally, if we write

H(t1) := E(1) + iJ1 (38)

then, as before with (24), (37) (with ‘t1’ simplified to ‘t’) says

i
∂ψ(q, t)

∂t
=
(
Ĥ(t)

)
t
ψ(q, t) (39)

Notice that in writing ∂ψ/∂t, we are comparing a vector in Ht with one in Ht+δt,

in effect using the Ξ introduced earlier to do so; that is, ∂ψ/∂t ∈ Ht really means

(∂/∂s)(Ξ(t, s)ψ(s))|s=t.

At first sight, (38) may look surprising, because it means that our Hamiltonian

functional H(t) is not simply the energy as given by (30). However, as we will see, (30)

alone would be wrong because of the subtle difference between v̂2 and v̂2, where v = dq/dt

is the velocity. It will turn out, in fact, that iJ1 will provide exactly the correction needed

to turn v̂2 into v̂2 — a correction that is infinite and purely imaginary!

The measure-factor and the quantum measure for skeletonized histories

To evaluate the Jacobian
dν(γ + δγ)

dν(γ)

we first need to give meaning to the formal integral
∫
dν(γ). This is not an easy task, and

presents in fact the main mathematical difficulty of the path integral formalism. One way

people have proceeded is to discretize time and replace the path γ with a “skeletonized”

path consisting of straight line segments between the chosen discrete times. (Mechanical

engineers would call this a “finite element” method.) Let the chosen times be

0 = t0, t1, t2, · · · , tN = T

and let the path locations at these times be

q0, q1, q2, · · · , qN

15



Then it is natural to take for dν(γ), the multiple integral

dν(γ) = K dq0dq1 · · ·dqN = K
N∏

j=0

dqj (40)

where K is a normalization factor to be determined that can depend on the times tj but

not on the positions qj .

For the action-functional itself we may take

S(γ) = S(qN , qN−1, · · · , q1, q0) =
N∑

j=1

S(qj , qj−1)

with, say

S(qj , qj−1) =
m

2

(qj − qj−1)
2

tj − tj−1

+ V

(
qj + qj−1

2
,
tj + tj−1

2

)
(tj − tj−1) (41)

which is a discretized version of the continuum action,
∫
(m/2)dq2/dt − V (q, t)dt. (The

midpoint approximation we have used here for the potential is not particularly sacred.

Using the exact integral
∫
V dt along the skeletonized world line would also be possible,

as would using the value of V at the final or initial endpoint of each segment. Similarly,

some people advocate instead of straight line path segments, segments that are solutions

of the classical equations of motion, leading to a more complicated version of the “kinetic

energy term” in S(qj , qj−1). For the Lagrangian (2), all these possibilites lead to the

same quantum measure in the continuum limit of zero spacing between the ti.)

Notice here that the qi are integrated over, but the ti are not. Thus we actually have

defined a large number of skeletonized quantum measures µ(·), one for each choice of the

times ti. The assumption is that in the limit where the spacings ∆t go to zero, all of these

skeletonized measures approach the same limit. (There is another approach that does

integrate over the ti, but it introduces a gauge-like over-counting that has to by cancelled

out before finite answers can be obtained. The resulting formalism resembles a theory

of 0 + 1-dimensional gravity coupled to a scalar field, just as the analogous approach to

the dynamics of a spacetime world sheet makes string theory look like 1 + 1-dimensional

gravity coupled to a scalar field.)
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For the normalization factor K = K(tN , · · · , t0) the standard choice is

K =

N∏

j=1

√
m

2πi∆tj,j−1

(42)

where ∆tj,j−1 = tj − tj−1. With this choice the condition (9) on U is fulfilled exactly in

the special case V = 0, and in the limit ∆t→ 0 generally. Notice that (9) is really two

distinct conditions. When r = t < s it reads U(r, s)U(s, r) ≡ U(s, r)∗ U(s, r) = 1; that is

it asserts that U(s, r) is unitary. When r > s > t on the other hand, (9) merely asserts

that propagation is “functorial” in the sense that propagation from t to s followed by

propagation from s to r is equivalent to propagation from t to r. Both these properties

entail conditions on K. The former determines the absolute value of K, and the latter

controls its phase, leaving however the freedom to introduce one arbitrary phase factor

for each ti. Since such an alteration of phase does not affect the quantity of ultimate

interest, the quantum measure µ(A), as given, for example, in (10), it may be regarded

as physically meaningless. By availing ourselves of this freedom, we can always bring K

to the form (42), which seems the simplest and most convenient.

With this choice, the fundamental combination
∫

γ∈ΩT
0

dν(γ) eiS(γ)

takes on the skeletonized form

N∏

j=1

√
m

2πi∆tj,j−1

∫ N∏

j=0

dqj

N∏

j=1

eiS(tj ,qj;tj−1,qj−1)

where S( , ) is given by (41). From this, the quantum measure of any set A of histories

can be determined: one evaluates the skeletonized version of (1) (which entails deciding

what is the skeletonized version of the subset A) and then takes the limit ∆t→ 0.

The variation of the skeletonized measure-factor dν(γ)

From (40) we see first of all that dν(γ) is indeed translation invariant with respect to

the qi, a fact we relied on in deriving the operator equations of motion (19) and also the

equation (23) for the canonical momentum, together with its consequence (28).

17



Under variations of the ti, on the other hand, K (and therefore dν) is obviously not

invariant. Rather, we have from (42)

logK =

N∑

j=1

[constant −
1

2
log ∆tj,j−1]

δK

K
= −

1

2

N∑

j=1

δ∆tj,j−1

∆tj,j−1

= −
1

2

N∑

j=1

δtj − δtj−1

∆tj,j−1

= −
1

2

N∑

j=1

δtj
∆tj,j−1

+
1

2

N−1∑

j=0

δtj
∆tj+1,j

or

δK

K
= −

1

2

δtN
∆tN,N−1

+
1

2

δt0
∆t1,0

−
1

2

N−1∑

j=1

δtj
tj+1 − 2tj + tj−1

∆tj,j−1∆tj+1,j

(43)

This same expression is also the infinitesimal Jacobian J(γ) appearing in (33) because,

for the variations being considered, we clearly have dν(γ + δγ)/dν(γ) = (K + δK)/K;

thus

J(γ) =
δK

K
.

The first thing to notice here is that J does indeed split into a bulk sum plus a boundary

term, as assumed in (34). What is more, the bulk sum will indeed go over to a continuum

integral as ∆t→ 0, provided only that ∆tj,j−1 and δtj are both slowly varying functions

of j. Specifically, we find by expanding in powers of ∆t that

J(λ) = −(N/2)ẗ/ṫ2 +O(1/N) .

(Conveniently, the term of order N0 that one might have expected drops out.) And for

the boundary term J1 of interest here, (43) gives us

J1 =
−1

2∆tN,N−1

+O(∆t)

Putting this together with (38) and (30) yields, finally, the Hamiltonian functional

in the skeletonized formulation:

Hskel(t) = Eskel(t) + iJ1 =
m

2

∆q2

∆t2
+ V (q, t) −

i

2∆t
+ iO(∆t) (44)
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where ∆q := q(t)− q(t−∆t), ∆t = tN − tN−1 and t = tN here is what in (38) was called

t1. The operator that enters into (39) as the generator of time-translation is then

Ĥ(t) = lim
∆t→ 0

̂Hskel(t) (45)

The Hamiltonian operator Ĥ(t) as a function of q̂(t) and ˙̂q(t) (or p̂(t))

Equations (39), (44) and (45) give us the law of evolution of the wave function ψ as it

emerges most naturally from the path integral. In order to connect this result up with

the more familiar differential operator form of the Hamiltonian that one encounters in

every textbook of quantum mechanics, it remains, in view of (24), only to demonstrate

that (45) reduces to p̂2/2m + V̂ (q). In light of (44) and (27)–(28), this is the same as

showing that

op

(
m

2

∆q2

∆t2
−

i

2∆t

)
=
m

2

(
op

(
∆q

∆t

))2

,

which can also be written as

op

((
∆q

∆t

)2
)

−

(
op

(
∆q

∆t

))2

=
i

m∆t
(46)

But this is easily seen with the help of (28) and (26). In fact, let ∆q = q(t) − q(t−

∆t) =: a− b. Then

∆q2 = (a− b)2 = a2 − 2ab+ b2

Remembering our operator ordering rule, we see that, on the other hand,

∆̂q2 = â2 − 2âb̂+ b̂2 ,

which differs from (∆̂q)2 by

(â2 − 2âb̂+ b̂2) − (â− b̂)2 = −2âb̂+ âb̂+ b̂â = [̂b, â]

Now from (28), we have

â− b̂ = q̂(t) − q̂(t− ∆t) = p̂∆t/m+O(∆t2) (47)
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whence, by (26),

[̂b, â] = [̂b− â, â] = −
∆t

m
[p̂, q̂] +O(∆t2) =

i∆t

m
+O(∆t2)

which exhibits the ∆q2 ∼ ∆t dependence familiar from Brownian motion. Hence,

op

((
∆q

∆t

)2
)

−

(
op

(
∆q

∆t

))2

=
i

m∆t
+O(∆t0) (48)

as anticipated.

This result is almost what we were aiming at, but there is still the final term of order

∆t0 in (48) to account for. That this term also vanishes can be seen by returning to (47)

and keeping the next term, −¨̂q∆t2/2. Given (20), this O(∆t2) term drops out of the

commutator [̂b, â] because of the obvious fact that q̂(t) ♮ q̂(t). One can easily check that

it also drops out when an electromagnetic field is present.

More generally, one can notice that all the corrections we have been worrying about

— including iJ1 itself — are purely imaginary by nature. Thus, they had to drop out if

the Hamiltonion operator was to come out selfadjoint, or equivalently if the propagator

U(t1, t0) was to be unitary as required if the quantum measure is to be well-defined.

In a less careful treatment, we might just have discarded all these corrections without

doing any work at all, on the grounds that, if they did not vanish, then we would have

to modify the measure-factor to make them do so! In this sense, there seems to be no

“operator ordering” ambiguity at all in the path integral prescription as applied to (2).

(It reappears in a curved configuration space, though.)

Finally, we can notice that the (purely imaginary) discrepancy in the energy that

got cancelled by J1, namely i/2∆t (or ih̄/2∆t if we restore the h̄) is divergent for small

∆t. If we had tried to interpret v̂2 = op((dq/dt)2) as

lim
∆t→ 0

op

((
∆q

∆t

)2
)

then we would have gotten no finite result at all, not even a wrong one.
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