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Introduction

We live in a epoch of rapid improvements in observational cosmology and ex-
perimental gravity. Advances in instrumentation and data processing, in fact,
are allowing a very detailed description of the Cosmic Microwave Background
anisotropies and conspire to give increasing precision in the evaluation of cos-
mological parameters such as the age, the spatial curvature, the rate of ex-
pansion and of acceleration of the universe. Beside, the direct detection of
gravitational waves is expected in the next decade thanks to experiments like
the ground based interferometers [GEO600], [VIRGO], [LIGO] and [EURO]
and the interferometer space antenna [LISA]. Finally, high precision tests
of the equivalence principle will be provided by the missions MICROSCOPE
[P. Touboul et al., 2001] and [STEP]. Such a rich observational situation rep-
resents an exciting challenge for fundamental physics, opening up a new, “low
energy” path to test the theories candidate for unifying all interactions and/or
give a quantum description of gravity.

By now, the only known consistent quantum theory of gravity is superstring
theory? which indeed has been the framework of my work during PhD. In
particular, this thesis is based on the work made in collaboration with Gabriele
Veneziano, Maurizio Gasperini and Thibault Damour and is devoted to examine
possible implications on gravity and cosmology of the string-inspired “strong
coupling scenario” that I shortly introduce below.

The low-energy limit of Superstring theory, at tree-level in the string-loop
expansion, presents a variety of massless and massive fields including the gravi-
ton and hence seems an appropriate starting point to describe all the known
interactions in a unified fashion. Moreover, the theory is finite, the inverse
string length being a UV cut-off for the effective low-energy field theory, and
contains no free-parameters, the couplings being related to the vacuum expec-
tation value of the dilaton field. However, despite the presence of a spin-two
“gravitational” field, the tree level theory is far from describing gravity as we
experience it. The presence of the dilaton field and of other long range scalars
(“moduli fields”) plagues the tree-level theory with unacceptable violations of
the equivalence principle.

(The subject of equivalence principle violations is reviewed in some detail
in Chapter 1 for a generic theory of gravity in the presence of a single scalar
field. Newtonian and Post-Newtonian limits are introduced in order to quantify

?See [Green, Schwarz and Witten, 1987], [Polchinski, 1998]
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the deviations from general relativity. The experiments which provide the most
strict bounds on such deviations are described and the bounds themselves stated.)

It is common wisdom [Taylor and Veneziano, 1988] to assume that some
mass is generated for the moduli fields, thereby suppressing their long range
interactions and restoring the equivalence principle on observable scales, say
> Ilmm. In the case of the dilaton ¢, the potential that gives it a mass should
also freeze its value in the so-called “weak coupling region” (¢ < 0) and prevent
unobserved time-variations of the coupling “constants”. However, at weak cou-
pling we should sufficiently trust the perturbative tree-level action where such a
potential leaves no trace of itself. Thus, it looks unlikely that non-perturbative
effects will be significant enough in the perturbative region to stabilize the mod-
uli. Another possibility is that generic string-loop corrections (at non-weak cou-
pling) are such that the dilaton decouples from the other fields at some value
¢m-. This possibility has been investigated by [Damour and Polyakov, 1994]
who have shown that if such decoupling value exists, it acts as a cosmological
attractor for the dilaton and the theory is phenomenologically safe.

Recently, [Veneziano, 2002] has studied the effective gravitational and gauge
couplings obtained for a toy quantum-field theory model that resembles the low
energy limit of string theory. Thanks to the large number of degrees of freedom
that are integrated over, the renormalized couplings tend to be for the most part
induced by loop corrections and reach an extremum at infinite bare coupling.
This toy model suggests that the effective action of string theory has in fact
a decoupling value ¢, for the dilaton but, contrary to the case considered by
Damour and Polyakov, this value is at infinity, ¢, — oo ! Thus, the standard
scenario of a dilaton stuck at a certain value may change in a new one where
the dilaton is running to infinity and still the theory is phenomenologically ac-
ceptable. Of course, the point at infinity is much less an efficient cosmological
attractor for the dilaton and more consistent equivalence principle (EP) viola-
tions are expected.

(The strategies to get a phenomenologically acceptable theory of gravity from
string theory are sketched in Chapter 2. Some scales of phenomenological rel-
evance in string theory are also discussed. In the last section (2.3) the basic
ideas and motivations of the “strong coupling scenario” are introduced.)

A primordial inflationary period proves particularly efficient in pushing the
dilaton toward its fixed value at infinity, and we have shown [Damour, Piazza
and Veneziano, 2002b] that the present value of the dilaton [see equation (3.28)
in Chapter 3] can be related to the observed density fluctuations on large scales
and to some slow-roll inflationary parameter. Some inflaton’s potentials are
indeed ruled out in our model by the present experimental bounds on EP vi-
olations, since they provide too low a value of the dilaton today. We expect
composition dependent violations of order (Aa/a) ~ 107'2, where the parame-
ter (Aa/a) 4p measures the difference in the acceleration a of two bodies A and
B of different composition [Damour, Piazza and Veneziano, 2002a]. Note that
the satellite experiments MICROSCOPE [P. Touboul et al., 2001] and [STEP]



will check the universality of free-fall up to the levels (Aa/a) ~ 107'° and
(Aa/a) ~ 10718 respectively.

(In Chapter 3 the phenomenology of the model is studied, ezpecially for what
concernes EP violations. The basic references are our works [Damour, Piazza
and Veneziano, 2002a] and [Damour, Piazza and Veneziano, 2002b].)

As the dilaton runs to infinity, it may play some relevant role in the evolu-
tion of the universe, what a freezed dilaton couldn’t do. In particular, we have
shown [Gasperini, Piazza and Veneziano, 2002] that, in the presence of some
non-perturbative potential, the dilaton may act as a “quintessence” the usually
ad hoc introduced field that should drive the present accelerated expansion of
the universe. Moreover, a non trivial coupling between dilaton and dark mat-
ter, which is rather natural in a string context, can lead to a final configuration
with fixed positive acceleration and dilatonic over dark matter energy densities
ratio. This would consist in a solution of the so-called “cosmic coincidence”
problem.

(In Chapter 4 this possible cosmological implications of the strong coupling
scenario are discussed in detail. The basic reference is [Gasperini, Piazza and
Veneziano, 2002].)
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Chapter 1

Equivalence Principle
violations

A crucial ingredient of General Relativity (GR) is the Equivalence Principle
(EP), saying more or less that all bodies fall in a gravitational field with the same
acceleration. What in Newtonian gravity may appear just as a “by chance”
occurrence (inertial and gravitational masses “happen” to be proportional), by
[Einstein, 1907] was called “hypothesis of complete physical equivalence” and
put at the basis of the formulation of GR. The aspect emphasized by Einstein
is that, in virtue of the universality of free fall, it is always possible to nullify
(locally) the effects of the gravitational field by moving to a freely-falling system:
a freely-falling observer does not experience gravity just because everything
in its neighbourhood falls in the same way as it does. Such a slight change
of viewpoint inspired the idea of describing gravity by means of a symmetric
“metric” tensor g,, which can always (locally) take the Minkowski “flat” form
by a suitable change of coordinates. By the same token, the effects of gravity
are faithfully reproducible by means of accelerated (local) frames.

A posteriori, people have identified three conceptually different “kinds” of
equivalence principle. While referring to [Will, 2001] and [Damour, 1996a] for
a wider and more rigorous treatement of the argument, let’s state the three
different subprinciples as follows:

e Weak Equivalence Principle (WEP): The trajectory of a test body falling
in a gravitational field is independent of its internal composition.

e FEinstenian Equivalence Principle (EEP): WEP is true and if you are a
freely falling observer the outcomes of your local non-gravitational exper-
iments are independent of your velocity and position.

e Strong Equivalence Principle (SEP): WEP is true also for self-gravitating
bodies and, if you are a freely falling observer, neither local gravitational
experiments’ outcomes depend on your velocity and position.

Such statements, although conceptually distinct, when embodied in a consis-
tent theoretical framework may result someway related (apart from the trivial
SEP = EEP = WEP). In particular, a number of “plausibility” arguments
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10 CHAPTER 1. EQUIVALENCE PRINCIPLE VIOLATIONS

have been given in favour of the so-called Shiff’s conjecture which asserts that
any complete, self consistent theory of gravity that embodies WEP necessarily
embodies EEP (WEP = EEP) [Will, 1993]. Thus, at least from a theoreti-
cal point of view, it is customary to distinguish only between SEP violations
(composition independent violations) and WEP-EEP violations (composition
dependent violations). On the other hand, it is widely believed that a theory
of gravity incorporating up to SEP must be a pure tensor theory as GR, where
gravitation is mediated by - and couples to matter through - the only metric
tensor g,

One may note that, so far, no deviations from GR have been observed and
ask why we should struggle to classify and quantify possible, and still never
experienced, EP violations. Beside its appealing on foundational grounds, the
argument is of concrete interest in that the theoretical frameworks of modern
unification theories, and notaby string theory, suggests that EP must be vio-
lated at some level. In particular, all string theory models definitely predict the
existence of at least a scalar field, the dilaton, and always give a scalar-tensor
“version” of gravity. It is intriguing that low-energy gravitational physics ex-
periments may discriminate between competing models of unification better
than high-energy experiments can actually do!

In this chapter we review EP violations in scalar tensor theories of gravity.
In particular, we restrict the discussion to the case in which a single coupled
scalar field is present. The generalization to several scalar fields, has been
carried out by [Damour and Esposito-Farese, 1992] and does not present any
relevant conceptual novelty respect to the single scalar field case. EP violations
in a much wider class of theories of gravity are considered in [Will, 1993] and
are beyond the scope of this work.

1.1 Conformally related frames

Suppose we are given the low-energy limit of a supposedly foundamental theory,
e.g. a superstring theory model with some dimensional reduction mechanism,
in terms of the action

_ ) _
g= 2 / d'5/=G [By()R — By(8) 5" 0,60,6 — B(4)]
+ §m[‘lj’u 5[“/; ¢:| (11)

The mass scale M, gives the typical strength of the gravitational coupling to
matter and R is the Ricci scalar constructed with the metric tensor Guv- The
coefficients B;s are assumed to be strictly positive functions of the dimensionless
scalar field ¢. The matter action §m contains the “matter” fields ¥; that we
associate to the standard model of particle interactions. The metric g, is
involved in the matter action gm through covariant derivatives acting on matter
fields.

In order to understand any better the dynamics of (1.1), it is often usefull
to bring it into a more familiar form. To begin with, we may want to have
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the usual Ricci gravitational kinetic term in the action. In D = 4 spacetime
dimensions this is always possible (see Appendix A for details), by referring to
the conformally rescaled Einstein metric g,,:

2

g;w — Quv = ﬁ*g Bg(¢) g/w’ (1.2)
*

where M, is the reduced “naked” Plank mass. The reason why it is “naked” will

be explained in the next section. When written in terms of g,,, the gravitational

sector of (1.1) reads

3B, By M2
| =2 NV _
R (2 5t B, 8,6 0 M2B2B(¢) :

where the Ricci scalar R is constructed with the Einstein metric g,,. The
unusual kinetic term for ¢ can be easily reduced to a more canonical form by a
simple redefinition of the scalar field ¢:

M2

zv/=g

S grav —

B? 1B;\"”
9 157
b— o= /d¢(432 239) , (1.3
bringing action (1.1) to the final “Einstein—Klein Gordon” form
M2 [ 4
S=25 [tV [R-29" 0,00, B(o)] + Sullisgunl. (14

where B(p) = M2M 2B 2B(¢) . Although in other contexts a Klein Gordon
field is more often deﬁned with mass dimensions, the massless field ¢ defined
in (1.3) is very often used in the litterature on scalar tensor theories of gravity.
Note also that here both the original and Einstein-transformed potentials B(¢)
and B(y) have the unusual dimensions of [mass]2.

A description in terms of the Einstein metric g, is often referred to as
Einstein frame. Although each frame is mathematically equivalent to any other,
in General Relativity we are used to think of the metric as a “physical real
object”, that gives the physical measurable distances between systems. In a
more extended scalar-tensor context as that of (1.4), which is the physical
frame? Is there any? Strictly speaking, the answer to the latter is affirmative
only in the very special case in which matter couples to gravity in a purely
metric way i.e. the case in which the metric g,, and the scalar field ¢ enter
the matter action through some conformally related metric g,, = A(<p)29l“, to
which matter universally couples:

Sm[\IJia Guv, 90] = §m[\I/'La AQ((p)gu,,] = Em[\]?“ guu] (1'5)

The “bar” over S, emphasizes a different functional dependence on its ar-
guments of the “Jordan-frame” matter action S, from the “Einstein-frame”
matter action S,,. The above condition guarantees the validity of EEP in the
scalar tensor theory we are considering. In fact, by using a simple result about
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pseudo-Riemannian spaces, one can take any worldline v and find a local coor-
dinate system along it with respect to which the metric g, is Minkowskian and
has null derivatives. The evolution of a matter system of negligible self-gravity
in the vicinity of -y can be described as just that of an isolated system in special
relativity and will exhibit no preferred spatial direction nor velocity. Moreover,
the local evolution of the system will depend only on the values of the coupling
constants and mass scales that enter the usual Standard Model.

The Jordan metric g,,, when it exists, is then the physical metric, the
one measured by rods, clocks, laser interferometers etc ... constructed with
the matter fields ¥;. Take, say, the platinum-iridium prototype bar kept in
Paris: modulo of course some thermodinamical conditions, the bar is always
and everywhere 1 “Jordan meter” long, since in the Jordan frame the equations
governing its internal structure do not contain the scalar field . On the con-
trary, its “Einstein length” may depend on the local value of ¢. So, whenever
you measure lengths by means of platinum bars you are actually measuring
Jordan frame lengths!

In terms of gy, the action reads

2 _ " —_ - _ J—
5= Ag* /\/—_9 [¢R - % g" 0, 0,0 — ¢°B| + Sml¥i,gw],  (1.6)
where
Juv — Guv = A2((P)g/u/7 (1.7)

and we have defined

$=A2(p),  3+2w(p) = A%(p)/A* (). (L.8)

in order to easily recover the original [Brans and Dicke, 1961] theory in the case
w = const.

So far, we have introduced up to three different conformally related metric
tensors: guv, guv and guy. The tilde metric is intended as somehow supplied
ab initio by our supposedly foundamental quantum theory, whose gravitational
phenomenology we want to study. In the case of string theory, g,, may well be
the metric appearing in the o-model formulation, the spacetime where pertur-
bative strings live. In this case M, in front of action (1.1) can be identified with
the string scale M which is also the natural cut-off of the low-energy theory
(1.1). It is worth saying that, from a stringy point of view, it’s right when the
“tilde” curvatures (R, R*”R,,) reach the scale M, that the low energy descrip-
tion breaks down and higher derivative corrections are needed. In any other
frame the critical scales for the curvatures generally depend on the local value
of the scalar field (the dilaton): from this point of view the “string frame” g,
is favored in the high curvature regime. On the other hand, the low curvature,
low energy regime is most naturally described in terms of the frame, if it exists,
that universally couples to matter, the Jordan frame g,, since it is the one
measured by ordinary rods and clocks. It would take a purely gravitational
clock, e.g. that defined by the orbital motion of two black holes, to measure
the Einstein metric g,
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In order to study and quantify the deviations from General Relativity of
scalar tensor theories we proceed first by considering purely metric couplings
and by discussing in this context composition-independent (S)EP violations.
Then we go to a wider class of theories to study composition-dependent (W)EP
violations.

1.2 Metric couplings and composition-independent
EP violations

We now want to study the Newtonian and post-Newtonian limits of the scalar
tensor theory (1.1) in the case of a purely metric coupling i.e. when S, =
SmWi, A%(¢)gu]. Equations are most easily written in the Einstein frame. By
varying action (1.4) with respect to ¢g*” and ¢ we find

B(yp 871G, 1
R, = 20,90,¢p — %gwj + —a (Tuv — ETg’W) (1.9)
B'(p) 4rnG.,
DQO - 4 - 64 Ol((P)T, (110)

where the velocity of light ¢ has been explicitely re-inserted for reasons that
will be clear in the following, T}, is the Einstein frame stress-energy tensor,

B 2c 6Sm
V=g g’

and the box symbol [0 = Vg, denotes the usual Einstein-frame Laplacian.
Instead of the (bare reduced) Plank mass M, we have introduced the (bare)
Newton constant G,, where M, = (87G,)'/2, and the reason why we call
it “bare” is that G, does not include scalar contributions to the gravitational
interaction. The way such contributions enter the game will be clear in the
following. Their strength is measured by the crucial parameter

Ty =

T = g, T". (1.11)

aly) = dlr;i‘i(‘m. (1.12)

To obtain (1.10) we have made use of assumption (1.5):

5Sm _ / 4 6§m[qlia glw] 5guV(y) (1.13)

d(x) og(y)  dp(x)

where the first factor in the integral defines the Jordan-frame stress-energy
tensor in a way similar to (1.11):

— _ 2c 5Sm ) — = MY 44
Tl“/ = — \/—__g W = A (QO)TIUJ, T = glujT = A (QO)T. (114)
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1.2.1 Newtonian limit and effective Newton constant

Our first task is to determine the effective gravitational force acting between
two bodies according to the scalar-tensor theory (1.1). For this purpose, we
analyze the Newtonian limit of the theory which consists of two dinstinct steps:
(1) linearizing Einstein’s equations around a Minkonski space time and (i7)
neglecting velocity-dependent terms in the linearized equations. In other words
we are assuming that, as in the solar system, typical relative velocities are
small compared to the velocity of light. This allows to refer to a common
Minkowskian background and to neglect velocity dependent terms referred to
such background. We also assume that curvatures are everywhere small on
Plank scales so that we can trust linearized equations.

So we linearize equations (1.9) and (1.10) around a flat Minkowski metric
N = diag(—1,1,1,1) and a constant scalar field configuration ¢:

Guv = Nuv + h;wa @ — o + . (1'15)

The first order Christoffel symbols and Ricci tensor components read

1
T = 51" Ouhay + dyhoy — Orhy) (1.16)

Ry = 9,10, — 9,T%,
1 ) ) , (1.17)
= 5 (=Ohyw + 8,0,hf, — ,0uhf + 0u0phf).

where now [ is the first order Minkowskian Laplacian [0 = 00, and indices
are raised and lowered with the Minkowski metric 7, as usual in linear theory
[Wald, 1984]. It is known that in the linearized approach the components of h,,
— as well as those of g, in the full GR formalism - change under a coordinate
transformations. This gauge freedom can be fixed by choosing the harmonic
gauge, defined by the relation

1
0"hy = §8uh (harmonic gauge).

In the harmonic gauge equations (1.9) and (1.10) assume the final linear form

167G, 1
th,z/ = T A (Tuu - ETUIW> ) (1.18)
47Gy
(O-m?)p = — 4 a(po)T. (1.19)

In going from (1.9) and (1.10) to (1.18) and (1.19) we have also made the
reasonable assumption that the background value of the dilaton, ¢q resides at
a minimum of its potential, B'(¢g) = 0. Moreover, to avoid a cosmological
constant term in the equations, we have also assumed that B(pg) = 0. Finally
we have defined the constant m through the second derivative of B in ¢y :



1.2. COMPOSITION-INDEPENDENT EP VIOLATIONS 15

m? = B"(pg) /4. In what follows we denote for brevity with o the value of a(y)
at the minimum of the potential: « = a(yy).
The above equations have the two (formal) solutions

167G, _ 1

hIJ'V = — A [ 1 (THV — §T77/u/) y (120)
4rG _

o=——7 o (d-m?)'T. (1.21)

We now move to the physical Jordan frame and study the interaction acting
between two bodies. To begin with, we need the gravity—matter interaction term
at the linearized level. Following [Damour, 19964, we note that the Jordan-
frame analogue of (1.11) can be written as

58, — Qi / &2y "5 T 65,
C

which is an interaction term of the required order in the perturbations, since
the background value of the stress-energy tensor is null. This suggests that
gravity couples to the physical stress energy tensor T, through the perturbed
Jordan metric

0Guw = (5[A2(g0)g,“,] = A((pO)Q(hW + 29,0 ¢) + higher order terms,

so that the linearized interaction action is

2

Sint = % / d*z (hy + 2 nu,) T, (1.22)
Note in fact that at zeroth order in the perturbations, the conformal rescaling
(1.7) brings the background Minkowski spacetime into itself. In (1.22) and in
the following we deal with this fact by means of a coordinate rescaling z# —
' = A(po)z* such that the Jordan — “rescaled” Minkowski metric 7, reads
A = diag.(—1,1,1,1) only when written in terms of the new coordinates
zM. Thus, the generally covariant rescaling of the volume element d*z,/—g =
d*z+/—g A*(yp) reduces to

dtz — d*z = A'(pg)d'z,
and the Jordan frame- linearized Laplacian O is defined by
- d 0
5= i G
In order to study the gravitational interaction of two localized objects, one
“here” and the other “there” with physical stress-energy tensors W T and T

respectively, we write with the aid of (1.22) the interaction between the body
“here” and the gravitational fields, say h,, and ¢, produced by “there”:

A 2 o
Sint = M/d‘lj( thuy + 2 o) el (1.24)

= A ?(po)0. (1.23)

2c
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We can then substitute h,, and ¢; with their solutions given by (1.20) and
(1.21) and note that the various products do not change in form by going to
the Jordan frame, e.g. 017, = O°'T,,. We obtain the interaction action
directly in terms of the stress energy tensors of the two bodies:

47TG* _ — Y = _ — —
Sint = —A(<P0)2c—5/d4$ [ hT“ ot (2 tLpy — tT"hu/) +
o T(@O—-m?)~tT]. (1.25)

Equation (1.25) shows clearly that the interaction between “here” and “there”
is mediated by a spin-2 field and a possibly massive spin-0 field.

To obtain the Newtonian limit we go one step further and assume that the
velocities of the two bodies are small. In the limit of two quasi- static point-like
objects of masses M1 and M

™ ~ ﬁ“OﬁVOM(S?’(x —-x9), T~ —M53(x — Xp) (1.26)
the Langrangian (not “Lagrangian density”!) is
Lin(r) = —4nG, A(po)> M, M, / Brdx—r)[A; + (A - m?)] 63 (x)
(1.27)

where we have put one of the two bodies at the origin of the coordinate frame
x = 0 and the other at the point r. We have also neglected the time-derivatives
in the D’Alambertian, introduced the flat-space Laplacian A and omitted the
“bar” over the physical quantities for readability. By Fourier transforming into
momentum space we obtain

d3 )
Ling(r) = — 471G A(po)* M1 My / &z / Sk et

/ Bk (1 o? e
. + e
(2m)3 \ -k? —kZ-—m?

Ak 1 o? v
= 47TG*A((p0)2M1M2/ (271_)3 (—k2 + —k2 _ m2> elk .

It is sufficient to calculate the integral for the second term in the brackets since
the first one is a particular case (« = 1, m = 0) of the second. This ammounts
to deriving the Yukawa potential by Fourier transforming the propagator of
a massive particle. By using spherical coordinates in the momentum space
k= |k|,0 we get

d3k o? ik-r o? o k2 T : tkr cos 6
/Wme = W/(; dkm/o d031n96

_ o /oo Dbk ez’k'r _ a_Qefmr.
ir(2m)? J_o K2+ m? At T
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In the last step we have close the contour of the integral above in the complex
plane picking up the residue of the simple pole at k = +im. Putting all together
we eventually find

2 —mr

1  a%e
Lulr) = ~Vieml0) = Aoty (2+557)

As expected, in the presence of a massive scalar field, the usual 1/r gravita-
tional potential gets modified by a Yukawa-type term that dies out at a distance
A~1/m.

Modifications of the 1/r scaling of gravity have been experimentally con-
strained over distances above the centimeter. The bounds on the Yukawa-type
term in (1.28) are [Damour, 19964]

a2 < 1077 if A~1cm

a2 < 5x107* if A~1m

la)? < 1073 if 10m <A <10 km
a2 < 1078 if 10* km < X < 10°% km

Quite surprisingly, sub-millimeter scales are very poorly constrained and are
currently the subject of experimental tests [Long, Churnside and Price, 2000].
These short-distance gravity experiments are highly desirable, also because
modifications of gravity under the millimeter (with a different power-law term of
the kind 1/7™) have been recently predicted by new models of compactifications
such as that of [Arkani-Hamed, Dimopoulos and Dvali, 1998].

The two main routes to a phenomenologically accettable theory of gravity
from string-inspired models are already suggested by the eloquent expression
(1.28): either you suppose that the dilaton have a sufficiently large mass (say,
m > myg) to suppress its long-range interactions [Taylor and Veneziano, 1988],
or you assume to find yourself in a region of the parameter space of the theory
where the dilaton is sufficiently decoupled (say a < «p) [Damour and Polyacov,
1994], [Damour, Piazza and Veneziano, 2002a].

In what follows we shall concentrate on the case of a long-ranged scalar
field, m = 0. In this case (1.28) predicts a 1/r potential between two masses
and an effective Newton constant given by

G(g) = G.A(p)[1+a(p)?] (1.29)

The Einstein frame Newton constant G, is rescaled by a factor A(()2, as already
evident in the Jordan-frame action (1.7) where we recall that ¢ is right A(y) 2,
and gets a corrective contribution by the scalar field interactions proportional
to the parameter a(yp)? defined in (1.12). This can provide deviations form GR
in two related ways.

First, the Newton “constant” may vary in space and time depending on
the background (or vacuum expectation) value of ¢, so that by performing
gravitational experiments in different space-time regions one may find different
outcomes. This constitutes, by the very definition at the beginning of this
chapter, a violation of SEP. In a homogeneous and isotropic universe one may
expect the “background” dilaton to be roughly constant on spatial slices of
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constant cosmological time ¢t = const. and significant variations on Hubble
time scales, H 1~ 10'° yr. Unfortunately, the solar system observations and
experiments providing the best constraints on the time variation of G do not
significantly restrict such a rough estimate, giving limits of order |G /G| < 101!
yr~1. A complete account of the experimental bounds on |G/G| can be found
in [Uzan, 2002].

Second, if the “background” value of ¢ was fixed by some mechanism, one
could never experience deviations from GR in the stationary Newtonian limit,
since, by (1.29) the effect of a massless scalar field would correspond to an
unobservable rescaling of the Newton constant. Still, there are post-Newtonian
effects that discriminate GR from pure-metrically coupled theories of gravity.
Such post-Newtonian effects put the more severe phenomenological constraints
on the existence of long-range scalar fields and are the following subject of
study.

1.2.2 Post-Newtonian limit and deviations form General Rela-
tivity

One may note that in the Newtonian limit, apart from the dilaton, only the

deviations from Minkowski of the time-time components ggo and 7% are con-

sidered. As long as bodies are quasi-stationary, in fact, only 7% is different
from zero and, by equation (1.20) and (1.21) with m = 0,

2 UNew (.’L‘)

2 0 Y= dij>  goi =0, (1.30)

goo = —1+

UN x
PNew = —a 7";( ) (1.31)
where Unew(z) is the Newton potential for a generic quasi-static matter distri-
bution:
G,

Too(xl,t)
Usen(xt) = 3 [ &4 T

(1.32)

and, consistently with the quasi-static assumption of Newtonian approximation,
we have neglected the time derivatives in the D’Alambertian.

The Newtonian limit can then be viewed as an expansion around Minkowski
where the metric components and the dilaton fluctuations ¢ from the back-
ground value g are considered up to the following orders in 1/c :

goos ® — O(c™?), gio, 9ij — 0(c?),

while the only non-null stress-energy tensor component 7% is a quantity of
order ¢? :

T% = 0(?).

While referring always to slowly varying, weakly interacting gravitational sys-
tem, we can make a step further and consider the next order in 1/c of the above
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quantities i.e. the Post-Newtonian order. Note that this imply to consider in
the equations both the linear velocity dependent terms that we neglected in the
Newtonian approximation, and some terms beyond the linear order. At first
post-Newtonian (1PN) level we need to treat the gravitational quantities up to
the following order:

goo, ¢ = O(c™), gio = O(c?), gij — 0(c?)
while the stress energy tensor components are of the following order
7% = 0(c?), T = 0(c), T = 0(c?).

In what follows we use a Post-Newtonian formalism developed by [Blanchet,
Damour and Schafer,1990] and applied to the several scalar field case by [Damour
and Esposito-Farése, 1992]. The main advantages of this formalism are the use
of a convenient parametrization of the metric components that greatly simplify
the equations and the possibility to consider any type of matter content and
not only a perfect fluid. Still, differently from [Damour and Esposito-Farése,
1992], we won’t use the harmonic gauge but the more standard Post-Newtonian
gauge [Will, 1993] defined by the relations

1
hokx = §h,0
1
hik g = E(hz’ — hoo,i)

To write the equations (1.9) and (1.10) at 1PN level we need to express R, to
the required order in hy,. We have:

( 1 1 1 _
Ry = —§V2h00 - §|Vh00\2 + ihklhoo,kl + 0(c™)
1, 1 iy
§ Roi = —§(V hoi + §h00,z’0) + 0(c™) (1.34)
|- —4
\RZ’]’ = —§V hij + O(c™?)

In the exponential parametrization of [Blanchet, Damour and Schafer,1990] the
metric components are expressed in terms of the potentials U(z) and A;(z) as
follows

2U 2 2 o -6
goo = —€xp <_c_2> = —1+C—2U—c—4U +0(c™) (1.35)
A; _
= — o) (136)

2U 2U _
gij = 0ij exp <+C—2> = 0;j (1 + 0_2) +0(c ) (1.37)
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from which follows

2U
i = e (-2) + o)
2
g0 = —exp (+c—2]) +0(c )
. A,
0i _ i -5
g = — 0—3 + O(C )
y 2
g7 = Gijexp (—C—g) +0(c™)

(1.38)
(1.39)

(1.40)

(1.41)

Note that we have just moved a step forward equation (1.30) and that the po-
tential U needs now to be considered up to order ¢~2. By defining the symbol
“x” as “equal to the required order in 1/¢” we can calculate the contravari-
ant components of the Ricci tensor in terms of the potentials U and A; the
remarkably simple form of R% being the main advantage of the “exponential
parametrization” we are using.

(

\

RY x~ ¢"¢" Ry = e4U/c2—V2U (g—l) N —

R~ pioqb = —g;;

1 1

<R0i ~ nooninoj ~ @Uo’i— @V%‘lz

)

VU
62

(1.42)

In order to write the components of the tensor on the RHS of (1.9) we note

that

T = TW(UW + h;w)

= —T% 4 (T%hgo + T*) + (2T%ho; + T hoy) + . ..

where we have grouped together in parenthesis terms of the same order in 1/c.

We obtain

;

[y

TOO_ %Tgoo ~ _(TOO +Tkk)

[N

70 _ %TgOi ~ O

1 1

Q

T — ZTg"

00
( 2 3l %

2

(1.43)

The equation for the components (i5) is nothing more than the ¢ 2 order equa-

tion (1.32). The other

equations are:

B 167G,

VA = - —T" + cUp

(1.44)
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4G,

c2

ViU = (T% + T*F) (1.45)
The quantity 7°° +T** plays the role of an “active gravitational mass density”,
what in more standard Post Newtonian formalisms is generally expressed as a
cumbersome combination of perfect-fluid parameters. In order to write the
equation for the dilaton at the required level we have to pay some attention
in going from the full-covariant D’Alambertian O of equation (1.10) to the flat
one 00, = n*”0,0, appearing already in linearized equations (1.18) and (1.19):

1 1
0 = —au(vV/—gg"0,) = n* 9,0,
V=g " V=g (1.46)
~ efZU/c2Dn
Equation (1.10) at 1PN level thus reads
4G,
Do = T2 alp)(T% — TH) (147

where 1PN corrections to (1.19) are given by the subleading term T** and by
a(p) that must now be considered up to order ¢~2 i.e. calculated at ey the
lowest order solution given in (1.31). The solutions of (1.45) and (1.47) thus
read

G« 3,0 T (xla t) + T (X,, t)
= = 1.4
Ut = 5 /d v o , (1.48)
_ 1 s F(XL)
o(x,t) = 2 d’z P— (1.49)

where the source term for the dilaton contains also the lower-order solution
PNew -

1 02

F(x',t) = T 2 PNew

+ Gra(pNew ) (T — TFF). (1.50)

We now move to the Jordan physical frame g, = A%(p)g,,. Consistently
with 1PN order we expand the conformal factor as

A%(p) = A*(po) exp(2ap + By®) + O(c™°) (1.51)
where the parameter /3 is defined as

= d*Alp)  dalp)
B = 7 dp (1.52)

By introducing the Jordan-frame potential

U =U-cap+0(c™) = (140 Unew +0(c™?) (1.53)
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we get, for the physical metric g, rescaled by an un-physical constant number,

I 2U 28 -1)0%\ _ 2U 2802

goo ~ —e€xp <_C_2+T ~ —1+C—2—c—4, (154)
~ 2

goi & — gy +1)4;, (1.55)
N 24U 2yU

gij = i exp( Z2 > S (1 + ZQ ) . (1.56)

In the above equations we have made use of relation (1.31), and we have also
introduced the two crucial parameters 8 and y that characterize the 1PN limit
of a scalar-tensor theory of gravity. They coincide with the parameters in-
troduced by Eddington long ago when considering the gravitational field of
one central massive body(U ~ M/r) in a Brans-Dicke theory. General Rela-
tivity corresponds to the case f = v = 1 (although for U ~ M/r the usual
Schwarschild solution is not recovered because of the Post Newtonian gauge
we have choosen). In particular, it turns out that v — 1 and 8 — 1 measure
the amount of non-general relativistic velocity-dependent and non-linear terms
respectively in going from Newtonian to Post-Newtonian approximation. In
deriving the equation above one finds the relation

052

.
g1 = ﬁ (1.58)

Equation (1.48), written in terms of Jordan-frame quantities, gets modified into
U | 700 + Tkk
1-|-(37—2[3—1)c—2 ——

OU = —4nG(p) (1.59)

C

where TH’ = A=S(p)TH is the Jordan frame stress-energy tensor and G is the
effective Newton constant given in (1.29).

In the single scalar field case that we are considering, deviations form Gen-
eral Relativity are encoded in the two Post-Newtonian parameters 8 and +.
Once predictions for the behaviour of matter are obtained in terms of 8 and 7,
one can compare such predictions with experiments.

1.2.3 Measuring vy

The experiments considered in the following are made with light rays travelling
in the gravitational field of the Sun. Since the slow velocity approximation is
not appropriate in this case we have to treat space and time on the same footing
i.e. all metric components must be considered at the same order in 1/c. Then,
up to order ¢~2, by equations (1.54)-(1.56), experiments with light rays can
only constraint the parameter ~.
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The first test we consider was proposed by [Shapiro, 1964] and involves the
time delays between transmission of radar pulses toward either of the inner
planets (Venus or Mercury) and detection of the echos. At order ¢ 2, in fact,
the metric (1.54)—(1.56) is diagonal, and along a null ray ds = 0 we have

dt? = cQngo di2. (1.60)

By substituting (1.54) and (1.56) and integrating we obtain

cAt = /|dl|

where 1 is the vector tangent to the trajectory of the light ray. The total time of
travel of a light ray is delated according to the strength of the gravitational po-
tential encountered along its path. This effect is maximum for a light ray which
just grazes the Sun. This is the case when the target planet is at “superior con-
junction”, i.e. on the opposite side of the Sun from the Earth. By substituting
the Newtonian potential of a pointlike object of mass M, U(r) = GM/|r| we
then estimate, with respect to the flat space case, a time delay of

1+ (y+ 1)692 (1.61)

GM b dr b dr
cdt ~ —(1+ 2 7-1—2/ 7], 1.62
c? ( 7)[ 0o Vd?>+z? 0o Vd?+z? (1.62)
where [, ~ 1.5 x 10'3cm and I, are the Earth-Sun and planet-Sun distances
respectively, and d is the distance of closet approach of the light ray to the
center of the Sun. In the limit [; > d, [, > d, the above integrals give

GM 41,1

: (1.63)

The expected order of magnitude of the time delay effect is given by the
Schwarzchild radius of the Sun in time units 2GM/c® ~ 1075s. = 10pus. It
is usefull to introduce the physical radius of the Sun Ry, ~ 7 x 10'°cm and
express the logarithm in equation (1.63) as

41,1, I\? R,\? l
=Ind+1In|{— In|{ — In{-—=]. 1.64

y> n4+In ( R +1In y +1In I, (1.64)
The second term on the RHS of eq. (1.64) is known (~ 10.6) while d and
I, in the last two terms are specific of the experiment and are meaningfully

expressed as ratios of the radius of the Sun and of the so-called astronomical
unit [ respectively. We obtain finally

d\* (1
240 ps — 20 psIn | — — - (1.65)
R, Ly

Since Shapiro’s discovery of this effect a number of measurements have been
made using ranging to targets passing through superior conjunction. Since one
does not have access to a “Newtonian — flat space” signal against which to

In

1+~
ot ~ —~
2
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compare the round trip travel time of the observed signal, it is necessary to
do a differential measurement of the variations in round trip travel times as
the target passes through superior conjunction, and to look for the logarithmic
behaviour (1.65). Up to date, the most precise measurement of the coefficient
(14++)/2) has been performed in 1979 by the Viking Mars landers and orbiters,
used as active retransmitters of the radar signals. The final result of the Viking
time-delay experiment is [Reasenberg et al. , 1979]

1
Y _ 4 0.001. (1.66)

For more than a decade (1.66), provided by the time-delay effect, has been
the most tight constraint on y. The other celebrated effect of light deflection by
the Sun, which was one of the first great successes of Einstein General Relativity,
could not give great accuracies, at least in its most classical version of optical
lightstar observations during a solar eclipse. It can be shown [Will, 1993] that
at 1PN order the deflection angle §6 of a light ray passing near the Sun is given
by
14+v2GM
2 d
where 6y is the “Newtonian—flat spacetime” angle between the source and the
center of the Sun. The derivation of (1.67), although straightforward, is a bit
more complicate than that of (1.65) and won’t be presented here. As expected,

the maximum effect is obtained when the light ray passes very near the Sun:
d >~ R, cosfy ~ 1 and

00 =

(1 + cos by), (1.67)

1
50 ~ % 175 (1.68)

The difficulties of the optical lightstar experiments to be performed during a
solar eclipse have to do with weather conditions and variable scale changes
between eclipse- and comparison- field exposures.

Recently, things have dramatically changed, thanks to very-long-baseline ra-
dio interferometry (VLBI, see for instance [Lebach et al. 1995]). This technique
proves able to measure angular separations and changes in angles as small as
10~* seconds of arc. When groups of strong quasi-stellar radio sources (quasars)
pass very close to the Sun, the angular separations between pairs of them varies.
Such variations can be predicted very carefully by studying the motion of the
Earth with respect to the Sun, and observations can be used to fit the coeffi-
cient (147y)/2 in (1.67). Deflection experiments’ results overcame Viking’s ones
first with [Lebach et al. 1995] which got (1 +)/2 = 0.9998 & 0.0008. A recent
analysis over 2 millions VLBI observations has yielded [Eubanks et al. 1999]

1
TEY _ 0.99992 + 0.00014. (1.69)

(or v = 0.9996 + 0.0017) improving the precision of roughly a order of magni-
tude. This gives a constraint on « through equation (1.57):

o® < 1074 (1.70)
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1.2.4 Testing SEP and the parameter (3

The next experiment that we consider is in fact a direct test of the strong equiva-
lence principle (SEP), and is based on the observation of Earth and Moon’s tra-
jectories as they fall in the gravitational field of the Sun. Since the two planets
have non-negligible gravitational binding energies, they could fall with different
acceleration toward the Sun, thereby violating WEP for gravitating bodies and
then SEP. The most appropriate way to see this and to quantify such violations
in terms of the parameters v and  is to calculate at 1PN order the interaction
lagrangian between two massive bodies, just as we did at Newtonian order in
(1.28). This turns out to be of the form [Damour and Esposito-Farése, 1992]

. GM: M grav grav
Iint — % 14+ (48 —~v-3) (]\/Ill =2 + ﬁ) + vel. dependent terms| ,

where all quantities are defined as in (1.28), G is defined in (1.29) and E8"™Y
is a suitably defined gravitational self-energy of the body. The combination of
parameters n = 43 — v — 3, which in GR adds up to zero, is also called the
Nordtvedt parameter. It tells how much the dynamics of the two bodies, and
thus their trajectories, depend on their gravitational self energies.

An intuitive way to see this effect is the following. Even if the scalar field
¢ has a fixed background (cosmological) value, it fluctuates in the presence of
a self-gravitating system. In fact, at Newtonian order, it must satisfy equation
(1.19) having the trace of the stress-energy tensor as a source and (1.31) as
solution:

UNew a UNew

p= a5 = T2t (1.71)
In the last equality (1.53) has been used to express ¢ in terms of the physical
Newtonian-order potential Unew and we recall that, by convention, ¢ already
indicates the shift of the scalar field from its background value . Since in
this scalar tensor framework the effective Newton constant G depends on ¢
according to (1.29) a self-gravitating body generally “feels” a modified value
of G in its neighborhood. The point is that the total mass of the body also
depends on G through its gravitational self-energy Egray, say

m'c? = mc® + Egray - (1.72)

In fact, Egray = G X something, where, as in the electrostatic case, “something”
will be an appropriate double integral adding up the potential energies between
each pairs of particles in the body. Here it is sufficient to note that

62 o mtot
Egrav — W . (1.73)

The equation of motions for a particle of variable mass in a curved space-time
is
d?zt dz? dz° , . dz# dz¥] dlnm®ot
—|— W T = — gu _— = —
ds? P ds ds ds ds oxV

(1.74)
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the geodesic equation being recovered in the limit of constant mass. For a
particle initially at rest (dz'/ds = 0), the three-acceleration gets a correction

5 0lnm™ dInG
OdlnG Oy

da = —AVinmtt =

V. (1.75)

with respect to the usual geodesic one. By using for each factor on the RHS of
(1.75) equations (1.73), (1.29) and (1.71) respectively we finally obtain

ja = Eg—; (48 — v — 3) VUxew - (1.76)
me

Again, in General Relativity the trajectory of a body is independent of its
gravitational self-energy Fg,y, while in a general scalar tensor framework this
is no longer true and the Nordtvedt parameter n = 48 —y — 3 gives the strength
of such SEP violation. This effect was discovered by [Nordtvedt, 1968] who used
a early form of PPN formalism and derived the consequences of such effect on
the Earth-Moon orbit, such as the polarization of the Moon’s orbit around the
Earth toward the Sun.

In 1969 the Apollo 11 mission left a panel of corner-cube laser reflectors
on the surface of the Moon. Within a few weeks the telescope at the Mc-
Donald Observatory on Mt. Locke, Texas, succeeded in detecting photons
returned from a laser pulse sent to the reflector. Two more reflectors were
left by Apollo 14 and 15 and a last one in 1973 by the Russian spacecraft
Lunakhod II. Since then, lunar laser-ranging (LLR) experiments have made
regular measurements of the round-trip travel times of laser pulses between a
network of observatories and these lunar retroreflectors, with accuracies that
approach 50 ps (1 cm). A recent analysis of 24 years of experimental data has
given [Williams, Newhall and Dickey, 1996]

n=4-v—-3 = (0.7+1)x 1073 (1.77)
that, combined with (1.69), gives
-1 = —(0.34+0.5)x1073. (1.78)

It should be noted that the above results are valid under the assumption
that there is no WEP violations in the Earth-Moon system, as in the case of the
metric couplings that we have been considering in this section. To introduce
the argument of the next section one may note that an effect associated with
the different compositions of the Earth and the Moon may also contribute to
the acceleration of a self-gravitating body, say,

da = daggp + dacp (1.79)

where the composition dependent contribution dacp to the acceleration can be
defined as in (1.75) apart from considering the variations of the mass due to
the specific composition of the body and not to its gravitational self-energy.
At the time when [Williams, Newhall and Dickey, 1996] found their results
the estimated uncertainties related to WEP violations in the Earth-Moon sys-
tem were a factor of 5 greater than those related to the LLR data. Thus,
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by including the possibility of WEP violations, such uncertainties were inher-
ited by the parameters n and S above. Recently, improving the method of
[Su et sl., 1994], [Baessler et al., 1999] removed this ambiguity in the LLR test:
they constructed test bodies with compositions very close to that of the actual
Earth and Moon but, of course, with negligeable self-gravity. Then, by using
a torsion balance, they compared the accelerations of these “miniature” earth
and “miniature” moon toward the sun, thereby isolating the composition de-
pendent effect on the Earth-Moon system. The results they obtain have the
same confidence level as those of LLR and are valid also in the case of WEP
violations. For the Nordtvedt parameter n = 45 — v — 3 they obtain

In| < 1.3x1073 (1.80)
that, combined with (1.69), gives
|6—1] = 5x 107" (1.81)

To summarize, the violations of the strong equivalence principle are con-
strained by the bounds (1.69) [or (1.70)] and (1.81) on the Post-Newtonian
parameters v (or «) and (3 respectively.

1.3 Non-metric couplings and composition-dependent
EP violations

If the scalar theory in (1.1) is non-metrically coupled, i.e. if (1.5) does not
hold, composition dependent violations of the equivalence principle are generally
expected. An intrinsically non-metric coupling is, for instance, that of a gauge
theory in 4 dimensions with a ¢-dependent coupling [Br(p) = g~2] :

1
SlAL, guvs 0] = — 1 / d*zv/—g Br(p) F},Fl,g" 9" . (1.82)

In fact, with the rules given in Appendix A one may verify that the combination
d*z\/—g g" ¢g*° is invariant under Weil rescaling.

Another example is that of a theory where different particles’ masses have
different dependences on ¢. The two examples are in fact interrelated: The
atomic masses get different QED contributions according to proton and neutron
numbers. As a consequence, in models where the electron charge e (= g for
QED) has a ¢ dependence as in (1.82), one generally expects a non-universal
p-dependence of particles’ masses. In the next subsection we see how the latter
occurrence leads to WEP violations. Here it is worth saying that, also because
of the above interrelation, the cases of pure metric couplings with SEP violations
but without WEP violations are somehow artificial. In all unifying frameworks
both effects are predicted at some level and then need to be tested separately.
In [Damour, 19964)’s words “[ ... ] any bias towards preferentially testing the
class of so-called metric theories of gravitation [ ... ] is quite unjustified, both
from a historical perspective and (which is most important) from the point of
view of the current overall framework of fundamental physics. [ ... ] I know of
no cases where an exact metric coupling appeared naturally.”
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1.3.1 Different particles, different masses (> p-dependence)

The effective theory for barions + scalar-tensor gravity can be described in the
Einstein frame by an action of the form

1
S = S, + Sm = /d‘{m/——g (R—29" 8,6,4]

167G,
_EiﬂhV%WM¢HmMMm (1.83)
I

where the Einstein-frame masses of the different fields Ny generally depend on
¢ in different ways, more precisely, dlog my/dy # dlogm/dy. This is clearly a
non-metric coupling for matter. In fact, by the conformal transformation (1.7),
Jordan frame squared lengths get a factor A2(¢) and Jordan frame masses get
a factor A~!(yp) with respect to the Einstein frame ones. So the species Ny is
coupled with the “I-frame” glIw, i.e. the frame with respect to which the mass
of the particle is ¢ independent, say,
dlog As dlogmy

g, = ANQ)guw,  with e

This “I-metric” gﬁu is different from the one that couples to the species J, and a
common Jordan frame doesn’t exist in this case. By referring to Einstein frame
quantities we can see the effects of a varying mass my on a particle’s trajectory
by adapting equation (1.75) as follows

ba = —cVinmi(p) = —a;Vp (1.84)
where we have introduced the crucial parameter

= dlnmi(y) (1.85)
dep
that tells the strength of the scalar coupling to I particles. Note that, for the
barions + gravity theory (1.83), if all masses have the same p-dependence then
we go back to the metric coupling case of last section and all ass in (1.85)
coincide with the parameter « defined in (1.12). As usual, the above derivative
has to be taken at the present (cosmologically determined) value of (.

Now we can consider the interaction between two particles I and J by
assuming that the scalar field in (1.84) has the particle J as a source. Then we
can use the Newtonian order solution (1.31) which gives, for a pointlike source
of Einstein frame mass M,

G. M

o = —ay (1.86)
Note that, for the field generated by J, the appropriate coupling «; has to
be used. Putting all together, the Einstein frame acceleration of a particle 1
toward particle J ammounts to

G. M
la| = 2 1+ aray), (1.87)
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corresponding to an effective Newton constant of the form.
G¥, = G.(1+aray). (1.88)

This simple Newtonian order result generalizes (1.29) to composition dependent
couplings. Since there is not a preferred “physical frame” we are referring to
Einstein frame quantities.

A crucial observable quantity is the relative difference of acceleration be-
tween two test masses, made respectively of I and J particles, falling in the
same gravitational field: the so-called “Eotvos ratio” defined as

(&) _ 2|ar—ay| (1.89)
a )iz |a1+aJ|

This is a manifestly frame invariant quantity. At Newtonian order, by (1.87) it
reads

(A—)J — o - ay). (1.90)

where ag refers to the coupling of the common attractor, say, the Earth.

1.3.2 The effect of variable gauge couplings

Now we want to study in a more quantitative way the already mentioned relation
between the y-dependence of the gauge couplings [equation (1.82)] and the ¢-
dependence of the masses discussed in the last subsection. For this purpose we
need to estimate the various gauge contributions to the mass of an atom. We
follow a symplified path and neglect from the beginning the contributions of
quarks’ and electrons’ masses. We thus consider only the major contribution
coming from pure QCD effects and the QED corrections:

m =mqQcp + Am. (1.91)

The electromagnetic binding energy Am accounts both for the separate con-
tributions of each nucleon and for a collective Coulomb binding energy term.
The latter, which has been argued by [Damour and Polyakov, 1994] to domi-
nate over the others, is proportional to the atomic parameter F, that depends
on the number of protons Z and neutrons N through

Z(Z-1)

E = TR (1.92)

At first order in the fine-structure constant . [not to be confused with dilaton
couplings (1.12) and (1.85) !] we thus have

Am ~ azusza.FE (1.93)

where the proportionality factor has been written as a pure number a3 ~ 0.105
times the atomic mass unit ug ~ 931.5 MeV.



30 CHAPTER 1. EQUIVALENCE PRINCIPLE VIOLATIONS

The coupling aj of the dilaton to an element I is then given, according to
(1.85), by

d A doe E
ar ~ ——log mqcp (1+ u > Qpag + a3 2 L (1.94)
dy MQCD do pr

where ur denotes the mass of the element in atomic mass units, ur = mr/us,
and anaq = dlog mqep/de is the dominant QCD contribution to «. The dila-
ton dependence of mqcp is encoded in Aqcp, the Einstein frame confinement
QCD scale. The relevant QCD part of hadron masses is in fact known to be
proportional to Aqcp with some pure number as proportionality constant. We
have

dlog Aqcp(y)

i (1.95)

Qhad =

The parameter an,g clearly measures a composition independent effect and, in
this non metric-coupling model, is the best candidate to replace the a parameter
defined in (1.12) in the context of exact metric coupling theories. As such, it
also has to satisfy the experimental constraint (1.70) in order for the theory to
be acceptable.

If we trust (1.82) as a tree-level theory at some fundamental scale A; we
can infer the dilaton dependence of Aqcp on the basis of renormalization group
arguments. It is worth saying that since A; has the dimensions of a mass we
have to specify the frame where it is fixed (p-independent). In string inspired
models such frame is the string frame [the one of equation (1.1)] and A; is
the string mass. Here, for semplicity, we assume the scale A; to be fixed once
and for all in the Einstein frame, and refer to Section 3.2 for a more detailed
calculation that takes into account the (slight) E-frame ¢-dependence of A;. At
one loop order in perturbation theory the coupling gz at some scale y is given
with respect to a reference scale A; by [Peskin and Schroeder, 1995]

1 1 1
= + =

w
= — log —, (1.96)
g;% 912\3 B Ag

where g%s is supposed to be much less than unity for perturbation theory to
be trusted and S is some calculable parameter of order one. The confinement
scale Aqcp, where perturbation theory breaks down 912\Q0D ~ 1, corresponds to

Aqep = A, exp(—B/g3,) - (1.97)
Then Aqcp inherits the ¢ dependence from Br(p) = gXSQ and we finally obtain

As dlog By'
Agqecp  dp

(1.98)

Enough for composition independent-QCD effects. Now let’s come back to the
composition independent ones where the residual QED effects enter through the
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fine structure constant a.(¢). The “E6tvos ratio”, is obtained by substituting

(1.94) into (1.90):
A E
<—“) LN (—) , (1.99)
@ /g dep K/ L

where, for any quantity A, A(A);; = Ar— Ay . A table with the values of E/pu
for several elements can be found in [Damour, 19965].

1.3.3 Testing WEP

The first (W)EP tests date back to Galileo’s Leaning Tower of Pisa experiments,
whose precision was about 1%. Newton improved the experimental accuracy
to 0.1% using pendula made of different materials. Since then, accuracies have
dramatically improved. Modern high-precision experiments are mostly of the
“Eotvos type” named after Lorand Eotvos who started to experiment with
gravity and the torsion balance around 1885. In brief, two objects of different
composition are placed on a tray and suspended in a horizontal orientation by
a fine wire (“torsion balance”). The entire apparatus is continuously rotating
around a vertical axis with a period 7 long compared to the torsional oscillation
period of the pendulum. The measured effect is the modulation (with period
7) in the torque on the two objects, expected in the case of WEP violations.

Recently, the “Eot-Wash” experiment [Su et sl., 1994] carried out at the
University of Washington used a very sophisticated version of torsion balance
and compared the acceleration of various materials toward local topography on
the Earth, movable laboratory masses, the Sun and the galaxy. They measured
the differential acceleration between Be-Cu and Be-Al test body pairs [the ratios
E/p in equation (1.99) for aluminium, beryllium and copper are respectively
1.93, 0.64, 3.2], obtaining

a

A
(—“) — (~1.9+2.5) x 10712
Be—Cu
(1.100)

(@) = (—0.2+2.8) x 10712
@ / Be-Al

Curiously enough, the next generation of WEP tests [Blazer, 2001] will be
an improved version of Galileo’s Leaning Tower of Pisa experiment, in that
they will measure the differential acceleration of two truly freely falling bodies.
Such experiments will be made on satellites so that they will not have to deal
with environmental instabilities induced by Earth’s density fluctuations and by
human activities. Moreover, they will be able to obtain a very long duration of
free fall, following the test bodies along several orbits around the Earth. The
approved Center National d’Etudes Spatiales (CNES) mission MICROSCOPE
[P. Touboul et al., 2001] will fly in 2004 and will explore the level Aa/a ~
1071%, while the planned National Aeronautics and Space Agency (NASA) and
European Space Agency (ESA) mission STEP (Satellite Test of the Equivalence
Principle)[P. W. Worden, 1996], [STEP] could explore the Aa/a ~ 10718 level.
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Chapter 2

Gravity and Strings

In this chapter we give a brief introductional review of the low energy limit of
superstring theory, focussing on its implications on gravity. We first recall those
aspects which seem at odds with phenomenology and then review the strategies
by which these problems have been addressed up to date. The last section of
this chapter is devoted to describe the “strong coupling scenario” which is the
subject of this thesis work and which may suggest a new framework to interpret
string theory in a phenomenologically acceptable way.

2.1 The tree-level action

The low-energy limit of superstring theory [Green, Schwarz and Witten, 1987],
[Polchinski, 1998] is a supersymmetric quantum field theory of massless parti-
cles. Such a field theory should be viewed as an effective UV cut off theory, the
cut off being given by the string scale M, that we take as follows

M? 1
2 o

= 27T, (2.1)

where o is the universal Regge slope parameter’ with dimensions of (length)?
and T is the string tension. The only other parameter of the theory is the
dimensionless string coupling gs, which is given by the vacuum expectation
value (VEV) of a scalar field, the dilaton ®

el® = g2, (2.2)

The so-called critical superstring, is defined in D = 10 space-time dimensions.
There are various types of string theories: type I, heterotic Eg X Fg and heterotic
S0O(32) that have N = 1 supersymmetry. Type IT A and II B which have N = 2.
Heterotic theories and type I are the only theories with a non-abelian gauge
field.

1 We apologize with the reader for the omnipresent use of the greek letter a which indi-
cates the strength of the dilaton’s coupling to matter [equations (1.12) and (1.85)], the gauge
couplings as the fine structure constant in (1.99) and now, with a prime, the Regge slope
parameter.
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The low energy effective action of heterotic strings looks like
S = [ /=G | (Rio + 0,80"®) — —— Tr F> + (2.3)
= T € a’4 10 7 4@’3 PR .

We are concentrating on the gauge and gravitational sectors of the theory and
ellipsis stand for the other massless fields coming out from string quantization.
Ry is the Ricci scalar for the 10-dimensional metric tensor G,,,, whose appear-
ance is one of strings’ “miracles”, and F' is the gauge field strength, the gauge
group for heterotic string being either Eg x Eg or SO(32).

Compactification over a 6-dimensional Calabi-Yau manifold of volume V
allows to

e interpret the theory as effectively 4-dimensional on length scales 2> Ve,
e break supersymmetry,

e break the gauge group into the Standard Model group U(1) x SU(2) x
SU(3).

Upon compactification, the internal volume V becomes a new field and the sec-
tor of the theory relevant for this discussion can be described by a 4-dimensional
action similar in form to (2.3) where the four dimensional dilaton

e” o
P

v
¢ = @—logﬁ, (2.4)

takes the place of ® and the various fields are effective four dimensional quan-
tities:
(Vo) 1

o 4

— 4R
S:/d‘LLE\/—ge ¢ J-I_

Fampe | 4 .. (2.5)

Here ellipsis stand also for terms with moduli fields such as V created by com-
pactification as well as higher derivative operators representing the low-energy
effects of all the massive string modes. R is the Ricci scalar of the 4-dimensional
metric g,,. Tildes emphazise that quantities belong to the string frame (see
the discussion of Section 1.1).

2.1.1 Energy scales, couplings and the Planck scale problem

It is now essential to identify some scales of phenomenological relevance. We
first note that if we want to break the gauge group through compactifica-
tion then we expect the compactification scale V to be related to the Grand-
Unification Scale Mgyr. In the context of the Minimal Supersymmetric Stan-
dard Model, which successfully incorporates the Standard Model within the
framework of a supersymmetric theory, the low-energy couplings extrapolated
at high energies meet each other at the scale

M

G

or = 2x10% GeV (2.6)
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where their value is 2

1
Aoz = 5 - (2.7)
In a more or less isotropic Calabi-Yau manifold we then expect
Vo~ M5 (2.8)

which fixes the scale of the compactification volume on phenomenological grounds.

Now a few words on the crucial role of the dilaton ¢ in the theory. Its
VEV relates to the tree-level couplings of gauge and gravitational interactions
in four dimensions, and tells the degree of confidence by which the very tree-
level action (2.5) can be trusted. The physics of the string vacua with e{® > 1
may be as apparently far from (2.5) as low energy, hadronic physics is from the
perturbative QCD lagrangian. The same is true for the 10-dimensional theory
(2.3): the tree-level string coupling g, defined in (2.2) gives the confidence level
of perturbative heterotic string theory. In this respect, the discovery of dualities
[Polchinski, 1998] during the 90s between different string theories has given
some insight into the strong coupling regime and the belief that the different
string theories are in fact different limits of a unique theory. Just to cite some
results concerning heterotic strings, the strong coupling limits of SO(32) and
Eg x Eg have been proved to be equivalent to the weak coupling limits of
type I (open) string and 11-dimensional M-theory compactified on R'° x S1/Z,
respectively.

The case e® < 1, e? <1

If both the four dimensional and the ten dimensional theories are not strongly
coupled the couplings can be directly read off (2.5):
M3 e ? eV

: —_— pr— —_— 2.9
5 5 ” (2.9)

~ = 2.10
Yeor = 4x T amv (2.10)
where Mp = (87G) /2 is the reduced Planck mass. Note that the universal
coupling of the dilaton to both the gravitational and the gauge fields typical of
heterotic string theory forces a relation between Planck and string scales:
M2
ME = —5 | (2.11)
AT Oy

By substituting the expected volume of compactification (2.8) into (2.9) with
o' given by (2.10) we get :

—2/3 ¢®/6 (2.12)

= (47raGUT)

*For a nice review on the argument and its relations to string theory see [Dienes, 1997].
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this is clearly too low a value for the Planck mass over GUT scale ratio, since
under the non-strong coupling assumption e® < 1 and by substituting (2.7) we
would get the inequality

M ?
P < 16. (2.13)
MGUT

This perturbative heterotic string prediction is clearly in contrast with the
measured value of the reduced Planck mass

Mp ~ 2.4 x 108 GeV, (2.14)
which gives
M
P~ 120. (2.15)
GUT

According to [Kaplunovsky, 1988] the one loop corrections to the tree level
Planck mass (2.11) improve the bound (2.12) by a order of magnitude but this
is still incompatible with the observed value (2.14) .

The case {® > 1, ¢ <1

Using duality arguments, [Witten, 1996] suggested that the solution to the
above problem may be addressed by going to strong coupling while keeping
the effective four dimensional coupling weak (e® > 1, e? < 1). This works both
for Fg x Eg and for SO(32) heterotic string theory.

The case of SO(32) is particularly simple since the heterotic theory at strong
coupling is equivalent to the weakly coupled Type I theory, which is known to
be able to provide a much better agreement between Mp and M ... In Type I
theory, in fact, the dilaton does not couple universally to gauge and gravitational
fields and in the effective 10 dimensional action the F? term is multiplied by
e~®/2 instead of the overall factor e~® that appears in (2.3):

o—®1/2

Stypel = d¥z v -Gy R110+B S,0MP)) — TeF?+... ,

where the subscript I indicates the quantities relative to type I theory which are
related to the heterotic ones by the duality transformations [Polchinski, 1998]

Gru = ¢ %G, & = —-&, V; =32y (2.16)

where the last equality relates the compactification volumes in the two theories.
In brief, instead of (2.10), perturbative type I theory provides
eq)]/Z 0/3

euvr = v, (2.17)
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and instead of (2.12) we have
Mp

~ (47rozGUT)_2/3 e~ %16 (2.18)
which is not bounded from above but, rather, can take arbitrarily large values
by going deep in the weak coupling region of type I theory ®; — —oc i.e. the
strong coupling region for heterotic SO(32) ! What about the heterotic four
dimensional coupling? By using (2.4) and the transformations (2.16) one can
see that still o, defined in (2.17) is given by ~ e?/47r which thus must be
a smallish number. As announced, we are strongly coupled in ten dimensions
but still perturbative in four.

In the very same spirit but with a much more technical argument, [Witten,
1996] argues that Eg x Eg heterotic string theory at strong coupling provides
the estimate

MP ~ —1
M - CMG‘UT’

GUT

(2.19)
which is better than the tree-level weak coupling estimate (2.12).

2.1.2 String and gravity at tree-level

Some general features of the four dimensional effective action (2.5) are shared
by many types of string theories/compactification mechanisms at tree level as
well as by several supergravity models. It has been noted in the last section
that in the effective theory (2.5) couplings are not a priori given but, rather,
dynamical quantities related to the VEV of the dilaton. Although this is a
welcome occurrence for a theory candidate for unifying all the interactions (we
don’t need to fix the value of any free parameter by hand), as we have stressed in
Chapter 1, we are provided with strict phenomenological bounds on the possible
variations of the coupling constants, most notably of the fine structre constant.
Related to this, the presence of coupled massless scalar fields generally leads
to equivalence principle violations. Needless to say, a theory like that in (2.5)
describes something profoundly different from gravitation as we experience it.
Although we have in general little knowledge of the matter content of realistic
string models, we argue from (2.5) that both QED and QCD couplings have an
exponentially ¢-dependence. As emphasized in Section 1.3, such a dependence
cannot be cancelled out by a conformal frame transformation (see Section 1.1
for details) and represents an intrinsecally non-metric coupling. From action
(2.5) we then estimate the derivative of the fine structure constant o, to be of
the same order of « itself,

do,
d;‘/’) ~ a, (2.20)
[the canonical field (1.3) is just ¢ rescaled by a costant factor] while from (1.98)
we get
M;
Ohad = ~ 40 (221)

Aqcp
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which is unacceptable in virtue of the limit (1.70). The order of magnitude of
a typical E6tvos ratio (1.99) is also dramatically incompatible with the bound

(1.100) since it gives
A
(—“) ~3x10°2. (2.22)

a

In the rest of this chapter we examine the main different theoretical schemes
for obtaining a phenomenologically acceptable gravity from string theory. In
the first section we consider the conventional solution to the above problems,
according to which the dilaton, as well as all moduli fields, acquires a mass
for some non-perturbative mechanism. Next, we review the Damour-Polyakov
“least-coupling” principle, of which the strong coupling scenario, may be consid-
ered as an extension. The basic theoretical motivations of the strong coupling
scenario are analised in Section 2.3, while its phenomenology is discussed in
detail in the next chapter.

2.2 How to get a theory phenomenologically ok?

In the last section we have faced two problems, the first is related to the expected
ratio Mp/M,,,, in string theory, the second (also called “moduli stabilization
problem”) relates to equivalence principle violations as well as temporal varia-
tions of the couplings. In subsection 2.1.1 we have seen that the first problem
can be eased by going to strong string coupling while keeping the 4-dimensional
couplings small (e!® > 1, e/® < 1). In order to address the moduli stabi-
lization problem in the perturbative region of the theory (see Fig. 2.1), one
may ask if loop corrections improve the bad tree-level estimates (2.20)-(2.22).
The answer is no: [Taylor and Veneziano, 1988] have shown that the one-loop
corrected couplings of matter to the dilaton remain as strong as those of grav-
ity. It is then conventional wisdom to assume the existence of a potential V (¢)
which both fixes the dilaton value at its minimum (thereby preventing unac-
ceptable variations of coupling constants) and gives it a mass (Figure 2.1). The
interactions of a scalar field of mass mg are in fact suppressed over distances
I > 1/mg and give a Yukawa-type contribution to the gravitational interaction
between two bodies. This has been derived in some detail in Section 1.2 and
expressed by (1.28) . With a dilaton of mass, say, m, > 1073 eV deviations
from Einstein’s gravity would be quenched on distances larger than a fraction
of a millimeter and then unobservable in current experiments.

A dilaton stabilization at weak coupling, however, looks improbable for
theoretical reasons. At weak coupling, in fact, we have to trust (2.5), and a
potential for the dilaton does not appear in this action. In other words, it seems
improbable that a non-perturbative potential may act at weak coupling where
it should rapidly fall to zero.

2.2.1 Damour, Polyakov and the “least coupling principle”

The only alternative left to consider seem to be the non-weak 4-dimensional
regime: e > 1. Although at first sight inconsistent [by (2.5) we would get,
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WEAK COUPLING STRONG COUPLING
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@ ¢

Figure 2.1: The different regimes of the 4-dimensional effective theory depend
on the VEV of the four dimensional dilaton ¢. The vertical axis at ¢ = 0
separates weak coupling from strong coupling and a potential V(¢) for the
dilaton is drawn. At one time, V(¢) freezes the dilaton value in the perturbative
region and gives it a mass, thereby suppressing its long-range interactions.

for instance, oy, =~ 1], this alternative deserves to be considered since, as
already stressed in Section 2.1.1, as one moves from the weak coupling region,
loop corrections become more and more important, and one should trade the
tree-level action (2.5) for an effective action of the generic form

v [atav/s (40 e 260 (a0 - (9% - L Bete) P )
(2.23)

where the functions B(¢); will admit a generic weak coupling expansion of the
type

Bi(¢) = e™® +c(()i) + cgi)e"’ + cgi)ew + ... (2.24)

In (2.23) the kinetic term for the dilaton is defined in such a way that By has
the correct weak coupling expansion (2.24), consistent with (2.5) but does not
change sign when going from weak to strong coupling.

[Damour and Polyakov, 1994] has considered a theory of this type and for-
mulated a “least coupling principle” that can be stated as follows:

If there exists a special value ¢, which extremizes all the (relevant) coupling
functions B, L(¢), the cosmological evolution of the system naturally drives ¢
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toward ¢y,, where the theory is phenomenologically safe.

In the model considered by [Damour and Polyakov, 1994], hence, the dilaton
¢ does not acquire a mass but, through its cosmological evolution, decouples
from all the other fields including gravity, thereby restoring the equivalence
principle.

The crucial assumption, that all the (relevant) coupling functions B; ' ()
extremize at some (and the same) ¢,, is motivated by the conjectured S-duality
of heterotic strings compactified on a 6-dimensional torus T°¢ [Sen, 1994]: the
invariance of the theory under ¢ +— —¢ . Of course another crucial assumption
is that the functions B; in ¢,, have effectively the values of the respecting
coupling constant e.g. Bp(¢m) ! ~ dmag, -

The details of the Damour-Polyakov model will not be given here. Some of
the calculations are similar to those that will be presented in Chapter 3 for the
“strong coupling scenario” although the results are different. Contrary to the
latter, in fact, the Damour-Polyakov model does not predict any violations of
the equivalence principle to be detected in next to come experiments.

2.3 The strong coupling scenario

In this section we introduce the strong coupling scenario, the main subject of
this thesis work. We first give the theoretical motivations why the dilaton should
effectively decouple from the other fields as in the Damour-Polyakov model and
why the extremizing value ¢,, should be at infinity, ¢, = co. The same theo-
retical motivations suggest also that the functions B; at infinity have roughly
the required values to be effectively interpreted as “couplings”, a circumstance
that was simply assumed in the Damour-Polyakov work. Equivalence principle
violations and couplings’ time variations of the model are analysed in detail in
Chapter 3, while possible cosmological consequences are drawn in Chapter 4.
Some other interesting physical implications of the strong coupling scenario are
summarized at the end of this section.

2.3.1 Theoretical motivations

In what follows we use field-theoretic arguments in order to figure out the
effective action of string theory i.e. the form of the coupling functions B;(¢) in
equation (2.23). The underlying assumption is reasonable from a stringy point
of view: all the low-energy physics is encoded in the 4-dimensional quantum
field theory described at the tree-level by the action (2.5).

Following [Veneziano, 2002], we thus calculate the effective action® for gauge
and gravitational interactions in a toy model endowed with a cut off A (which is
assumed to preserve gauge symmetry and general covariance just as the “real”
string theory cut off M;) and in the presence of a large number of spin 1/2
and 0 massive fields [which represents the fermionic sector of the theory and
the ill-understood scalar sector: Higgs fields, moduli fields, ... both omitted in

3See, for instance, [Peskin and Schroeder, 1995]



2.3. THE STRONG COUPLING SCENARIO 41

(2.5)]. Some details of the calculation are given in Appendix B while in what
follows we report and discuss the results.

We consider a quantum field theory in D dimensions whose tree-level action
has the form

Nyjo

F2
S —/dD$\/_|:2K‘ —2:| + Zsscal ¢b + Zsferm ¢d
0

4 g5

where A is the cut-off, kg and gg are the bare gravitational and gauge couplings,
and Fj, is the field strength of the gauge field Aj,. For simplicity we assume
that the Ng scalars ¢, have the same mass mo and the Ny, fermions 94 have
the same mass my /5. The third “large” number is the rank N; of the gauge field.
We also assume that they are minimally coupled. Of course, since we consider
a generic background, the metric field g, and the gauge field A7, also enter the
matter sector of the model, Sg., and Sferm through covariant derivatives.

In order to describe the effective dynamics of gauge and gravitational inter-
actions we first integrate out the matter fields ¢4 and .

ZSeH Guv, A /D[¢ba¢d] Slguvs ALy by Yl . (2_25)

As a result, new (local as well as non-local) terms for g, and Af, are produced.
This is not a novelty: in the very same way, for instance, four fermions in-
teractions ¢ la Fermi are produced if one integrates out the massive W* and
Z° gauge bosons of electro-weak interactions. The example of induced gravity
[Sakharov, 1968] fits even better: even if not present at tree level, a Ricci term
in the action is generally produced by quantum effects. Hence gravity may be
a “quantum by-product” of the matter fields.

At leading order in the cut-off (and zeroth order in the field derivatives) the
integration (2.25) produces a cosmological constant term, which will be assumed
to vanish for some mechanism. At second order in the field derivatives, we have
corrections to the Ricci and F? terms which renormalize the coupling constants
as follows:

1 1

. N, N, 5)AP~2 2.26

9K2 22 + (coNo + ¢c1/2N1/2) (2.26)
1 1

—— —3 —— + (bgNy + by /9Ny ;9) AP 2 2.27

192 i + (boNo + by /2Ny /2) (2.27)

In Appendix B ¢y and c; 5 are calculated for the model at hands using results
of heat-kernel techniques [Barvinsky and Vilkovisky, 1985], [Avramidi, 1995],
while by and b/ can be obtained with more common quantum field methods
[Peskin and Schroeder, 1995]. In D = 4 the b coefficients account for the contri-
bution of each “flavour” to the beta function. In general they are proportional
to

bi X Oz dz/dA (2.28)
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where C; and d; are the quadratic Casimir operator and dimensionality for the
matter representation ¢ respectively and d 4 is the dimensionality of the adjoint
representation. The precise numerical values of the b and ¢ coefficients depend
of course on the renormalization scheme as well as on the explicit implementa-
tion of the cut-off. When D = 4 the behaviour of the leading order quantum
corrections in (2.27) is logarithmic in the cut off and reproduces the known
logarithmic scaling with the momenta of the renormalization group equations.
Note also that the leading corrections to the coupling constants (2.26), (2.27)
do not depend on the bare couplings. As a consequence of having considered
free scalars and fermions, the results (2.26), (2.27) are non-perturbative and
account for all the infinite loops resummation.

We now come to the inclusion of gauge and gravity loops in the effective
action and this is where the large-N limit hypothesis helps. In particular, we
need that the combination byNo + by /9 N1 2 — oo so that the effective coupling
constant after matter-loop renormalization is arbitrarily small. In this case we
can limit ourselves to the one-loop contribution to the effective action since it
dominates the functional integral. In D > 4 the renormalized gauge coupling
have the form

1 D—4
12 " ig + (boNo + by joNyj2 + B)ATT. (2.29)

The gauge field contribution 8 is proportional to the quadratic Casimir of the
adjoint representation Cy4. For a gauge group SU(N,), thus, § ~ N,, and in
terms of the number of gauge bosons N1 § ~ N11/2. Again, the case D =4 is
more interesting, the dependence on the cut-off is logarithmic and the linear
combination in parenthesis adds up to the one loop beta function. More about
the D = 4 case is found in the original work [Veneziano, 2002].

On the gravity side the situation is simpler and similar for all D > 4. In the
large-N limit graviton loop corrections are subleading and the one-loop gauge
field contribution in this case is roughly proportional to the number of gauge
bosons N; [Adler, 1982]:

1 D-2
72 22 + (coNo + c1/2N1j2 + et N1 )ATT. (2.30)

2.3.2 The basic assumptions

Equations (2.29) and (2.30) show that, in a model with a large number of mat-
ter fields and a high rank gauge group, the effective gauge and gravitational
couplings in cut-off units are bounded by numbers of order N~ !, N being the
number of independent species. Moreover, the strong bare coupling (“com-
positeness”) limit of the theory, go, k9 — 0o, is well defined and makes sense,
being the region of the parameter space where the effective couplings reach
their extremum. In the 4-dimensional string theory context we are considering
[equation (2.5)], the dilaton relates to the bare tree-level couplings as discussed
in detail in Section 2.1.1, and the cut-off A is at the string scale M. By re-
reading the results (2.29)-(2.30) with this “string-eye” we infer on the form of
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the Damour-Polyakov gauge couplings B; [equation (2.23)] in the region e{® > 1
and state the the basic assumption of the “strong coupling” scenario:

In the effective action of string theory

§ = /d%\/ﬁ (B‘;ffl” i+ 2D oy~ G9y7) - Tr(@) 2+ )

Oé’

all the relevant coupling functions B; have the general form

Bi(¢) = C;+0(e™?), (2.31)

¢p—00

where C; are pure numbers of order ~ 10? (the number of fields we have
integrated over).

As anticipated, we assume, as in the Damour and Polyakov model, that all
the coupling functions B;(¢) have a common extremum, except that such an
extremum is at infinity! Thus, the standard scenario of a dilaton stuck at a
certain value may change in that of a dilaton running to infinity i.e. that of
a theory running toward (bare!) strong coupling and still phenomenologically
acceptable.

The phenomenological consequences of this new scenario related to the vio-
lations of the equivalence principle and to the time variations of the couplings
are analyzed in detail in chapter 3, while some cosmological consequences are
drawn in chapter 4. In what follows we briefly discuss some other interesting
physical implications of this idea.

2.3.3 Possible physical implications

We now go back to the “Planck-scale problem” of Section 2.1.1 and see how
it is addressed at 4-dimensional (and 10-dimensional) strong coupling i.e. the
region of parameters e(® > 1, ¢®) > 1 not considered yet (see the discussion in
Section 2.1.1). We first note that, from (2.30), a large-rank gauge group (like
Es) can give an acceptable value for the renormalized gauge coupling:

al ~Cy~ /Ny (2.32)

At the same time the ratio M2/M2 is normalized down to a value of order
1/N;. So, instead of the weak coupling equation (2.11), we have:

M3

~ ~ —2
= M= e (2.33)

GuT "’

which provide a much better agreement between M, , and M,. Explicit
string results on the Planck scale renormalization have been carried out by

[Kohlprath, 2002]. Generalizing a previous work by [Kiritsis and Kounnas, 1995],
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he has calculated the one-loop renormalization of the Planck mass in type II
string theory compactified on a large class of symmetric orbifolds preserving
N = 1 supersymmetry. For certain choices of compactification it has been
shown that a rather large one-loop renormalization of the Planck mass is pos-
sible.

The other interesting physical consequence that we mention is shared by
this model with all induced gravity models. Note in fact that, in the strong
coupling limit, gravitational and gauge couplings are determined entirely by
loop corrections i.e. are induced. Some interest in induced gravity models has
been recently re-aroused in contexts such as the study of black hole thermod-
inamics (see [Wald, 2001] for a recent review) and the discussion of entropy
bounds ['t Hooft, 1993] [Veneziano, 1999] [Bousso, 1999]. The two subjects are
strongly related to each other (a black hole is in fact supposed to maximize
the entropy in a given region of spacetime) and are believed to represent use-
full tests for the theories candidate for quantum gravity. Let’s start by briefly
reviewing how induced gravity ideas may ease some problems related to black
hole thermodinamics.

It is known that several classical and semiclassical considerations about
black-hole physics conspire toward considering black holes as effective ther-
modinamical objects with an associated entropy given by

A
E ’
A being the area of the event horizon of the black hole. Now, if one tries
to calculate the contribution to the black hole entropy of the quantum, non-
gravitational fields in their vacuum states in the vicinity of a black hole (either
as “entanglement entropy” or “thermal entropy”), one generally finds an infi-
nite result, infinities being provided by space-time integrations near the black
hole horizon. Interesting enough, by introducing a UV cut off at the Plank
scale, the contribution of each quantum field to the entropy turns out to be of
the correct order of magnitude and always proportional to the area of the black
hole: Spy ~ A/G. Such a result is, on the other hand, “embarrassing”, since
any quantum field (either known or unknown to physicists!), contributes to the
total entropy of the black hole, so that, in order to obtain the correct geometri-
cal result (2.34), one should fine-tune the UV cut off according to the number of
independent quantum fields that are being considered. Here is where induced
gravity may come into play since, as first noted by [Susskind and Uglum, 1994]
and [Jacobson, 1994), in an induced gravity context the effective Newton con-
stant decreases with the number N of species as

1
NAZ®

Spn = (D = 4) (2.34)

Geg ~ (2.35)
This is also evident from (2.30) in the infinite bare coupling limit Ky — co. On
the other hand, the appropriate UV cut off is no longer G;ﬂ} /2 but, rather, A
or again, in string theory, M;. Thus the correct contribution of each field to
the entropy comes to be of order A2 A ~ A/GegN: the more independent fields
are considered the less each contributes! [Frolov, Fursaev and Zelnikov, 1997]
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have studied in detail the problem of black hole entropy in D = 4 dimensions
for a specific class of induced gravity models, where several contraints on the
number and masses of the matter fields are posed in order to make the result
finite (even without a cut off). String-inspired models, however, are already
naturally endowed with a UV cut off, the string mass M, and, in this respect,
seem to require much less fine-tuning.

The same reasoning can be easily extended to entropy bound issues. The
very appealing idea that (quantum) gravity and quantum field theory may
conspire and provide a geometrical bound on the total entropy of a given region
of spacetime, is threatened by the presence of a large number IV of species, each
separately contributing to the total entropy. Again, the problem is eased if the
Newton constant G itself, converting, so to say, areas into entropy, geometry
into information, decreases sufficiently rapidly with the number of different
fields V.

Apart from entropy issues, but in the very same spirit, an induced Newton
constant can also prevent vacuum gravitational instabilities, another possible
effect of the presence of a large number N of fields. As argued by [Brustein,
Eichler, Foffa and Oaknin, 2002], in fact, the virtual energy fluctuations of the
fields tend to form black holes of sizes increasing with N. For sufficiently large
N, the size of the created black hole is large enough in Plank units, so that that
region of space-time undergo a (real, not virtual!) gravitational collapse. Once
again, a possible recipe is to suppose a relation between G and A of the type of
equation (2.35).
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Chapter 3

Phenomenology of the model

In this chapter we basically review the work done in [Damour, Piazza and
Veneziano, 2002] and summarized in [Damour, Piazza and Veneziano, 2002b],
dedicated to explore the phenomenological consequences of the the strong cou-
pling scenario described in section 2.3, expecially in terms of equivalence prin-
ciple violations and space-time variations of couplings.

We briefly summarize the content of Chapter 2 by saying that all string
theory models predict the existence of a scalar partner of the spin 2 gravi-
ton: the dilaton ¢, whose vacuum expectation value (VEV) determines the
4-dimensional string coupling constant g4 ; = /2 [Witten, 1984]. At tree level,
the dilaton is massless and has gravitational-strength couplings to matter which
violate the equivalence principle [Taylor and Veneziano, 1988]. This is in vio-
lent conflict with present experimental tests of general relativity [compare, for
instance, the estimate (2.21) with the bound (1.70)]. It is generally assumed
that this conflict is avoided because, after supersymmetry breaking, the dilaton
might acquire a (large enough) mass. However, [Damour and Polyakov, 1994]
(see also [Damour and Nordtvedt, 1993]) have proposed a mechanism which
can naturally reconcile a massless dilaton with existing experimental data. All
this is reviewed in Section 2.2. The basic idea of [Damour and Polyakov, 1994]
was to exploit the string-loop modifications of the (four dimensional) effective
low-energy action

S = /d4a:\/§[3-”(¢) i+ Do) 206 — (V¢)?]

of of
1 ~

—7 Br(9) F?—V+.-|, (31)
i.e. the ¢-dependence of the various coefficients B;(¢), i = g, ¢, F, ... , given in

the weak-coupling region (e? — 0) by series of the form
Bi(¢) =e %+ céi) + cgi) e? + cg) e T (3.2)
coming from genus expansion of string theory: B; = ¥, gf(nfl)c,(f), with n =
0,1,2,.... As reviewed in section 2.2.1, [Damour and Polyakov, 1994] have

47
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shown that, if there exists a special value ¢,, of ¢ which extremizes all the (rel-
evant) coupling functions B;'(4), the cosmological evolution of the graviton-
dilaton-matter system naturally drives ¢ towards ¢,,. This provides a mech-
anism for fixing a massless dilaton at a value where it decouples from matter
(“Least Coupling Principle”). A simple situation where the existence of a uni-
versally extremizing dilaton value ¢, is guaranteed is that of S duality, i.e. a
symmetry gs <> 1/gs, or ¢ — —¢ (so that ¢, = 0).

The basic assumption of the strong coupling scenario is instead (2.31), sug-
gested by [Veneziano, 2002] after studying the toy model reviewed in section
2.3. In words: the infinite-bare-coupling limit g; — 0o (¢ — +00) yields smooth
finite limits for all the coupling functions, namely

Bi(¢) = Ci+ 0(e™?). (3.3)

Under this assumption, the coupling functions are all extremized at infinity, i.e.
¢m = +o0.

In the “large N”-type toy model of [Veneziano, 2002] it would be nat-
ural to expect that the O(e™?) term in equation (3.3) be positive, so that
B;(¢) be minimized at infinity. This would correspond to couplings A;(¢) ~
B Y(¢) = C;t — O(e~?) which are mazimized at infinity. Note, however, that
the most relevant cosmological coupling for this work, the coupling to the in-
flaton, A\(¢), contained in V' (see equation (3.14) below) is closer to a B; than
to its inverse. Thus A(¢) is naturally minimized at infinity (see further dis-
cussion of this point below), a crucial property for the attractor mechanism of
[Damour and Polyakov, 1994] and [Damour and Nordtvedt, 1993].

This chapter is organized as follows. In Section 3.1 we shall consider in detail
the early-time cosmology of models satisfying (3.3). More precisely, our main
aims will be to study the efficiency with which a primordial inflationary stage
drives ¢ towards the “fixed point” at infinity ¢,, = +00, thereby generalizing
the work [Damour and Vilenkin, 1996] which considered the inflationary attrac-
tion towards a local extremum ¢,,. In Section 3.2 we give quantitative estimates
of the present violations of the equivalence principle (non universality of free fall,
and variation of “constants”) in terms of the parameters introduced in Chapter
1. Our most important conclusion is that the runaway of the dilaton towards
strong-coupling (under the assumption (3.3)) naturally leads to WEP violations
which are rather large, in the sense of not being much smaller than the presently
tested level ~ 10712, This gives additional motivation for the currently planned
improved tests of the universality of free fall. Within our scenario, most of the
other deviations from general relativity (as the “post-Einsteinian” effects in
gravitationally interacting systems described in Section 1.2) are too small to
be of phenomenological interest. However, under some assumptions about the
coupling of ¢ to dark matter and/or dark energy as those of the cosmological
model [Gasperini, Piazza and Veneziano, 2002] of Chapter 4, the time variation
of the natural “constants” (notably the fine-structure constant) predicted by
our scenario might be large enough to be within reach of improved experimental
and/or observational data. The phenomenologically interesting conclusion that
equivalence-principle violations are generically predicted to be rather large after
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inflation (in sharp contrast with the results of [Damour and Vilenkin, 1996]) is
due to the fact that the attraction towards an extremum at infinity is much
less effective than the attraction towards a (finite) local extremum as originally
contemplated by [Damour and Polyakov, 1994]. This reduced effectiveness was
already pointed out in by [Damour and Nordtvedt, 1993] within the context of
equivalence-principle-respecting tensor-scalar theories (a la Jordan-Fierz-Brans-
Dicke).

3.1 Dilaton runaway

In this section we study the dilaton’s runaway during the various stages of
cosmological evolution. We first show (subsection 3.1.1) that, like in the case of
a local extremum [Damour and Vilenkin, 1996], inflation is particularly efficient
in pushing ¢ towards the fixed point. We will then argue (subsection 3.1.2)
that the order of magnitude of the bare string coupling e? ~ e®? does not suffer
further appreciable changes during all the subsequent evolution.

3.1.1 The inflationary period

Assuming some primordial inflationary stage driven by the potential energy of
an inflaton field ¥, and taking into account generic couplings to the dilaton ¢,
we consider an effective action of the form

o o

S BTV . (3.4)

In this string-frame action, the dilaton dependence of all the functions B;(¢),
V(X, ¢) is assumed to be of the form (3.3). It is convenient to replace the (o-
model) string metric g, by the conformally related Einstein metric introduced

in Section 1.1: g,, = C By(¢) guv, and the dilaton field by the variable

3(By\" By 1By
goz/dq& —(— + =5 +-5
a\B,) "B, "2B,
which differs from (1.3) because of the kinetic term for the dilaton has slightly
changed, as explained in Section 2.2. The normalization constant C' is cho-
sen so that the string units coincide with the Einstein units when ¢ — 4oc0:
C By(+00) = 1. [Note that C = 1/C, in terms of the general notation of
equation (3.3).] Introducing the (modified) Planck mass
m2 = 1 _ 4
P~ 4G~ Co’
and replacing also the inflaton by the dimensionless variable x = C~1/2m ! X,
we end up with an action of the form

1
2

, B'=0B/0¢ . (3.5)

(3.6)

5= [dtoya |72 R -T2 (90 - TE FIV? - b V()| L 61
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where

F(p) = By()/By(¢), V(x:9) = C?mp* B (P V(X 4).  (38)

In view of our basic assumption (3.3), note that, in the strong-coupling
limit ¢ — +o0, dp/d¢ tends, according to equation (3.5), to the constant
(C4/2C,)'/?, while the dilaton-dependent factor F (i) in front of the inflaton ki-
netic term tends to the constant C, /C,. The toy model of Ref. [Veneziano, 2002]
suggests that the various (positive) constants C; in equation (3.3) are all largish
and comparable to each other. We shall therefore assume that the various ra-
tios C;/C; are of order unity. The most important such ratio for the following
is ¢ = (20,/Cy)'/? which gives the asymptotic behaviour of the bare string
coupling as

g2 =e ~ e, (3.9)

In view of the fact that, in the strong-coupling limit we are interested in, the
factor F'(¢) in equation (3.7) quickly tends to a constant, we can simplify our
analysis (without modifying the essential physics) by replacing it by a constant
(which can then be absorbed in a redefinition of y). Henceforth, we shall
simply take F'(¢) = 1. [See, however, the comments below concerning the
self-regenerating inflationary regime.]

Following [Damour and Nordtvedt, 1993] it is then useful to combine the
Friedmann equations for the scale factor a(t) during inflation (ds? = —dt? +
a?(t) §;; dz* dz7) with the equations of motion of the two scalar fields x(2), ¢(t),
to write an autonomous equation describing the evolution of the two scalars in
terms of the parameter

p:/Hdt:/gdtzlna—l—const (3.10)
a

measuring the number of e-folds of the expansion. For any multiplet of scalar
fields, ¢ = (p®), this yields the simple equation [Damour and Nordtvedt, 1993]

S ¢ +2¢ = -VypIn|V(p), (3.11)
3—¢
where ¢’ = dg/dp, and where all operations on ¢ are covariantly defined in
terms of the g-model metric do? = v,4(p) dp® dp® defining the scalar kinetic
terms. In our simple model (with F(¢) = 1 ), we have a flat metric do? =
de? + dx?. [Note that, when 7,;(¢) is curved the acceleration term ¢ involves
a covariant derivative.]

As noted by [Damour and Nordtvedt, 1993], the generic solution of equation
(3.11) is easily grasped if one interprets it as a mechanical model: a particle
with position ¢, and velocity-dependent mass m (') = 2/(3 — ¢’%), moves,
in the “time” p = Ina + const, in the manifold do? under the influence of an
external potential In |V (¢)| and a constant friction force —2 ¢'. If the curvature
of the effective potential In |V ()| is sufficiently small the motion of ¢ rapidly
becomes slow and friction-dominated:
de

25, = Ve InV(p). (3.12)
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equation (3.12) is equivalent to the usual “slow roll” approximation.
Consistently with our general assumption (3.3), we consider potentials al-
lowing a strong-coupling expansion of the form:

V(x,9) = Vo(x) + Vi(x)e ™ + 0(e™¥), (3.13)

where Vj(x) is a typical chaotic-inflation potential with V5(0) = 0, while V;1(0) =
vy > 0 can possibly provide (if v; > 0) the effective cosmological constant
driving today’s acceleration in the scenario of [Gasperini, Piazza and Veneziano,
2002], which is the subjetc of next chapter. For the sake of simplicity we shall
discuss mainly the “factorized” power-law case Vp(x) ~ Vi(x) ~ x™ for which
we can conveniently write V in the form:

n

Vi e) = Mp) 2, (3.14)
with a dilaton-dependent coupling constant A(y) of the form
Ap) = Ao(1 + by e %). (3.15)

This example belongs to the class of the two-field inflationary potentials dis-
cussed in [Linde, 1990]. We have checked that our results remain qualitatively
the same for the more general potential (3.13) provided that Vy(x) and Vi(x)
are not extremely diffent and given the fact that v; is phenomenologically con-
strained to be very small. Note that, within the simplified model (3.15), the
ratio V1(x)/Vo(x) is equal to the constant coefficient by .

The universal (positive) constant ¢ appearing in the exponential e ¥ is the
same as in equation (3.9) [i.e. ¢ = (2C,/Cy)/?, which is expected to be of
order unity]. The coefficient by in (3.15) is such that by e~ =~ by e~? roughly
corresponds to a combination of terms ~ + C;! O(e~?) coming from the strong-
coupling asymptotics of several B;(¢), equation (3.3) (see equation (3.8)). In the
toy model of section 2.3 [Veneziano, 2002] one would therefore expect by to be
smallish. Anyway, we shall see that in final results only the ratios of such b; coef-
ficients enter. More important than the magnitude of b, is its sign. It is crucial
for the present strong-coupling attractor scenario to assume that by > 0, i.e that
A(p) reaches a minimum at strong-coupling, ¢ — +o00. Note again that this
behaviour is consistent with the simple “large N”-type idea of [Veneziano, 2002]
if we assimilate A(¢) to one of the inverse couplings B; appearing in (3.1) (for
instance By ~ gEQ, where gp is a gauge coupling), rather than to the coupling
itself. If the latter were the case, A(¢) would reach a mazimum as ¢ — +oo,
and the attractor mechanism of [Damour and Polyakov, 1994] would drive ¢ to-
wards weak coupling (¢ — —o0). However, the Einstein-frame ¢-dependence of
V(x) gets contributions from several Bii"(qﬁ), equation (3.8), which might con-
spire to minimize it at strong coupling. This feature is also probably necessary
in order to solve the cosmological-constant problem through some argument by
which the vacuum at infinity has vanishing energy density.

Substituting the potential (3.13) into the slow roll equation (3.12) and as-
suming (for simplicity) that Vi(x)e™“ is significantly smaller than Vj(x) leads
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to a decoupled set of evolution equations for x and ¢ (where V' = 0V/0x):

dx 1V
_ 1 3.16
dp 2V’ ( )
de 1 _ Wi
@ _ - Ny 3.17
p 2°° W (3.17)

Given some “initial” conditions xin, ¢in (discussed below) at some starting
point, say p = 0, the solution of equations (3.16), (3.17) is simply

p= 2/XXind)2>—<< Vo(x) ) , (3.18)

X Vo (%)
o _ yoom | C Vi(x(p))
et O [apg O (3.19)

which simply become:

1
pP= ;(X?H_XQ) ’
L )2 (3.20)
N . A C
e + “om X2 = const. = e¥in | “on Xi2n )

in the simplified case of egs. (3.14), (3.15).

Equations (3.20) show that, in order for the string coupling g2 ~ e to
have reached large values at the end of inflation, a large total number of e-
folds must have occurred while the (dimensionless) inflaton field x decreases
from a large initial value, to a value of order unity (in Planck units). To get
a quantitative estimate of the string coupling at the end of inflation we need
to choose the initial conditions xin, ¢in. A physically reasonable way (which is
further discussed below) of choosing iy is to start the classical evolution (3.16)-
(3.20) at the exit of the era of self-regenerating inflation (see [Linde, 1990]
and references therein). We will now show how to relate the exit from self-
regenerating inflation to the size of density fluctuations generated by inflation.

Let us recall (see [Linde, 1990] and references therein) that the density fluc-
tuation 0 = dp/p on large scales (estimated in the one-field approximation where
the inflaton x is the main contributor) is obtained by evaluating the expression

41 (2\7 V32
(x) ~ 37 (g) oV (3.21)

at the value x = xx, at which the physical scale we are considering crossed the
horizon outwards during inflation. For the scale corresponding to our present
horizon this usually corresponds to a value xx(Hp) (xg for short) reached
some 60 e-folds before the end of slow-roll. Following [Linde, 1990] we have
xu =~ 5y/n for the model (3.14) (and with our modified definition of x). The
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numerical value of dgy = 6(xg) which is compatible with cosmological data
(structure formation and cosmic microwave background) is i ~ 5 x 107°. In
the model (3.14) the function d(x) defined by (3.21) scales with x as X"TH.
Putting together this information we obtain a relation between xi, and d(xin),

which involves the value of the observable horizon-size fluctuations 0y = 6(xm):

n+2

5(xin) _ (ﬁ)z (3.22)

5(XH) XH

1.e.

2 2
i\ 2 6\ 72
Xin =~ XH (—“) ~ 5v/n (5—“) , (3.23)
H H
where we introduced the short-hand notation &, = 0(xin)-

Inserting equation (3.23) into equation (3.19) we then obtain the following
estimate of the string coupling constant after inflation as a function of ¢;, and
6(Xin)

2
eC(pend _ eapin ~ 5<V1/‘/0>p

9 052 s 4 (3.24)
< 2, ¢ Oin | "+

where (V1 /Vp) denotes the average value of Vi /Vo: (Vi/Vo) = [dp(Vi/Vo)/ [ dp
[note that this average ratio is equal to by in the simplified model (3.15)].

To get a quantitative estimate of e“Pend we still need to estimate the value of
d(xin) corresponding to the chosen “initial” value of the inflaton. As we will now
check, taking for xi, the value corresponding to the exit from self-regenerating
inflation corresponds simply to taking d(xin) ~ 1. Indeed, let us first recall that,
during inflation, each (canonically normalized) scalar field (of mass smaller than
the expansion rate H) undergoes typical quantum fluctuations of order H/(27),
per Hubble time [Linde, 1990]. This implies (for our dimensionless fields) that
the value of x at the exit from self-regeneration, say xex, is characterized by
He/(2m) = [0xV/(2V)]ex, where H = H/mp is the dimensionless Hubble ex-
pansion rate and where the right-hand side (RHS) is the classical change of x per
Hubble time (corresponding to the RHS of equation(3.16)). Using Friedmann’s
equation (in the slow-roll approximation) H2, ~ (2/3)V (xex), it is easily seen
that that the exit from self-regeneration corresponds to d(xex) = 4/3 ~ 1. It
is, a posteriori, physically quite reasonable to start using the classical evolution
system only when the (formal extrapolation) of the density fluctuation d(x)
becomes smaller than one.

Within some approximation, one can implement the effect of the combined
quantum fluctuations of (¢, x) by adding random terms with r.m.s. values
H /27 on the right hand side of equations (3.16) and (3.17), dx/dp and dy/dp
being precisely the shifts of the fields in a Hubble time. The system of equations
becomes thus of the Langevin-type

dx 1V H

_ it g 3.25
dp 2V0+27r£1’ (3.25)
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= —ce ¥—

dp 1 eoVi  H
dp 2 VO 27

&2, (3.26)

where H ~ [(2/3)V (x, $)]/2 (in the slow-roll approximation) is the dimension-
less expansion rate, and where & and & are (independent) normalized random
white noises:

(&i(p1) &(p2)) = 0i0(p1 —p2), 4,5 =1,2. (3.27)

When the random force terms dominate the evolution in either equation
(3.25) or equation (3.26) the quasi-classical description (3.16), (3.17) breaks
down. The phase space of the sytem can thus be roughly divided into four
regions according to whether the evolution of none, one or both of the two
fields is dominated by quantum fluctuations. This is depicted in Figure 1 where
such regions are delimited by dashed, thick curves in the case of a power-law
potential (3.14).

Apart from factors of order one, the evolution of the inflaton x is quasi-
classical in the region under the line y = A;}/ "+2) 1, the chaotic inflationary
models [Linde, 1990] such an inflaton’s value corresponds to the exit from the
self-regenerating regime and to the beginning of the quasi-classical slow-roll
inflation. As mentioned above it also corresponds to a perturbation §(x) ~ 1.
Somewhat surprisingly, in the model at hand, however, the quasi-classical region
for the inflaton evolution x < A;}/ (n+2) 35 affected by quantum fluctuations that
still dominate the evolution of ¢ in the region above the hyperbola-like curve
X = bi/ "/\;}/ "e~2¢¢/n We must therefore study, in some detail, the evolution
of the system in the presence of the noise term for ¢ as in eq. (3.26), assuming
a quasi classical evolution for y. This is done in Appendix C. The final result is
that, if we start at x < A;}/ ("H), (classical evolution for x) the average value
of e®? is multiplicatively renormalized, by a factor of order unity, with respect
to the classical trajectory e®¥<!, given by solving equations (3.16) - (3.17), i.e.
(e®?) = O(1)e?<. One also finds that the dispersion of €Y around its average
value is comparable to its average value.

We shall not try to discuss here what happens in the self-regenerating re-
gion x 2 Xin ~ A;}/ (+2) " Lot us recall that the simple decoupled system
(3.16)-(3.17) was obtained by neglecting the kinetic coupling term F'(¢) in equa-
tion (3.7). If we were to consider a more general model, we would have more
coupling between x and ¢ and we would expect that (contrary to Fig. 1 which
exhibits a “classical ¢ region” above the “quantum x line”) the evolution in the
self-regenerating region involves a strongly coupled system of Langevin equa-
tions. Then, as discussed in [Linde, 1990], solving such a system necessitates
to give boundary conditions on all the boundaries of the problem: notably for
X — 00, but also for ¢ — +00 and ¢ - —oc. We leave to future work such an
investigation (and a discussion of what are reasonable boundary conditions).
In this work we shall content ourselves with “starting” the evolution on the
quantum y boundary line yj, with some value ¢ = ¢j,, assuming that e¥in
is smaller than the driving effect due to inflation, i.e. than the RHS of equa-
tion (3.24). [This assumption is most natural in a work aimed at studying the
“attracting” effect due to primordial inflation.]



3.1. DILATON RUNAWAY

|
8 1\1 Quantum @ line
\‘ (©q. %Q)
\
\
7\
\
\
\
\\ Quantum y line
N
€ (@c, X\
N
\\
N ((pQ, Xe)

Log(x)

(Pc, Xe)

150 200

250 300
exp(cy)

55

Figure 3.1: The phase space of the system is represented in the case of a power—

law potential (3.14) with n = 2, by = 0.1 and Ao, = 1071%. The thick-dashed
(red) curves delimitate the quantum behaviour of the two fields, the horizontal
curve y = )\;ol/ ("+2) and the hyperbola-like curve x = bi/ n)\;ol/ "e~2co/m being
the limit of the quantum behaviour for x and ¢ respectively. In the white region
both fields have a classical behaviour. The last “fully classical” trajectory has

been represented by a thick (blue) curve. The bright—gray regions are those
where either the ¢ or the x evolution are dominated by quantum fluctuations.
The fully-quantum region is the dark—gray region on the top right.

Going back to our result (3.24), we can now insert, according to the preced-

ing discussion, the values §;, = 1 and e®¥in & e“Pend. Finally, in the simplified
model (3.14), (3.15), we get the estimate:

. . 25¢? 4

e¥end = (1) - e¥elend ~ (1) - 5 by (0m) »F2 . (3.28)
A more general analysis, based on the potential (3.13) leads to the same

final result but with n replaced by some average value of xVp ,/Vy, and with

by replaced by some average of the ratio V3 /Vj. Note that smaller values of the
exponent n lead to larger values of e““end_ ie. to a more effective attraction

towards the “fixed point at infinity”. The same is true if we take different
exponents ng and n; (for V and V; respectively) and assume Vi (xin) > Vo(Xin)
to hold as a result of xj, > 1 and n1 > ng. Also note that, numerically, if we
consider n = 2, i.e. the simplest chaotic-inflation potential V = %mi(gp) X2,
equation (3.28) involves the large number 12.5 x 6,7 ~ 2.5 x 10°. In the
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case where n = 4, ie. V = %)\(cp) x*, we have instead the number 12.5 x

6;2/ % ~ 0.92 x 10*. To understand the phenomenological meaning of these
numbers we need to relate e““end to the present, observable deviations from
general relativity. This issue is addressed in Section 3.2 after having argued
that the post-inflationary evolution of ¢ is sub-dominant.

3.1.2 Attraction of ¢ by the subsequent cosmological evolution

We have discussed above the efficiency with which inflation drives the dilaton
towards a fixed point at infinity. We need to complete this discussion by es-
timating the effect of the many e-folds of expansion that took place between
the end of inflation and the present time. To address this question, we need
to study in more detail the coupling of a runaway dilaton to various types of
matter, say a multi-component distribution of (relativistic or non-relativistic)
particles. This has already been done in Section 1.3 in the field formalism.
Equivalently, one can write the classical action for particles. Working in the
Einstein frame,

S = /d4:c\/§ [m—%R ~ P (v - %BF(QO)FQ +.. ] (3.29)

- Z/mA[‘P(xA)]\/—guu(wA)dxide.
A

As in (1.94) we introduce the crucial dimensionless quantity

Olnmy(p)
dy ’

aa(p) (3.30)
measuring the coupling of ¢ to a particle of type A. [For consistency with pre-
vious work, we keep the notation a4 but warn the reader that this should
not be confused with the various gauge coupling constants, often denoted
a; = g; 2 /4] The quantity a4 determines the effect of cosmological matter on
the evolution of ¢ through the general equation [Damour and Nordtvedt, 1993,
Damour and Polyakov, 1994]

2 pa — 3Py 3PA

where the primes denote derivatives with respect to p = Ina + const and where
p=X4apaand P =%, P, are the total “material” energy density and pressure
respectively, both obtained as sums over the various components filling the
universe at the exception of the kinetic energy density and pressure of ¢, pp =
(m%/2)(dp/dt)? = (771%/2)1‘-12(,0'2 and P, = pg. Accordingly, the Friedmann
equation reads

3H? = ~2—2ptot = 20 + H2<p'2. (3.32)

mp mp
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Note that p and P may also account for the potential energy density and
pressure of the scalar field, py = V(y), Py = —py and that one can for-
mally extend equation (3.31) to the “vacuum energy” component V() by as-
sociating to the potential V (p) the mass scale my (p) = V((p)i which gives
ay = dlnmy(p)/dp = +0InV(p)/0 ¢. Equation (3.11) is then recovered in
the limit where the scalar field is the dominant component.

In the simple cases (which are quite frequent; at least as approximate cases)
where one “matter” component, with known “equation of state” Ps/ps = wa =
const., dominates the cosmological density and pressure, equation (3.31) yields
an autonomous equation for the evolution (with redshift) of ¢. Using (3.32)
one finds that the “equation of state parameter” wio; = Piot/ptot corresponding
to the total energy and pressure (including now the kinetic contributions of ¢;
ie. proy = p+ (M5/2)(dp/dt)?, Py = P+ (M2%/2) (dp/dt)?) is given in terms
of the “matter” equation-of-state parameter w = P/p by

1—w

Wiot = W + T((PI)2 . (333)

The knowledge of wio then allows one to write explicitly the energy-balance
equation dpiot + 3(ptot + Piot)dIna = 0, which is easily solved in the simple
cases where wio; is (approximately) constant.

We see from equation (3.31) that, during the radiation era (starting, say,
immediately after the end of inflation), i.e. when the universe is dominated
by an ultra-relativistic gas (p4 — 3P4 = 0), the “driving force” on the right-
hand side of (3.31) vanishes, so that ¢ is not driven further away towards
infinity. Actually, one should take into account both the “inertial” effect of
the “velocity” ¢’ acquired during the preceding inflationary driving of ¢, and
the integrated effect of the many “mass thresholds”, Ty ~ m4, when some
component becomes non-relativistic (so that pg — 3P4 # 0). Using the results
of [Damour and Nordtvedt, 1993, Damour and Polyakov, 1994] one sees that,
in our case, both these effects have only a small impact on the value of .
Therefore, to a good approximation ¢ ~ .4 until the end of radiation era.

On the other hand, when the universe gets dominated by non-relativistic
matter, one gets a non-zero driving force in equation (3.31). In the slow roll
approximation, as the transient behaviour has died out, since w = P/p gets
negligible, we have simply

Pm = —am(¥), (3.34)

where ¢! stands the ¢-velocity during matter domination. and a;,(¢) denotes
the coupling (3.30) to dark matter.

The coupling to dark matter, a,,(¢), depends on the assumption one makes
about the asymptotic behaviour, at strong bare string coupling, of the mass
of the WIMPs constituting the dark matter. One natural looking, minimal
assumption is that dark matter, like all visible types of matter, is coupled in
a way which levels off at strong-bare-coupling, as in equation (3.3). In other
words, one generally expects that mp,(¢) ~ mpy(+00)(1 + by e7?) so that
am(p) =~ —by ce . Tt is then easy to solve equation (3.34), with initial con-
ditions @y = @end, ¢y = 0 (inherited from radiation era) at the beginning
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of the matter era. But we shall not bother to write the explicit solution be-
cause it is easily seen that the smallness of ¢~ “¥end guarantees that the “driving
force” o an,(p) remains always so small that the O(10) e-folds of matter era
until vacuum-energy domination (or until the present) have only a fractionally
negligible effect on ¢.

A more significant evolution of ¢ during the matter era is provided if,
as first proposed in [Damour, Gibbons and Gundlach, 1990] and taken up in
[Sandvik, Barrow and Magueijo, 2002, Olive and Pospelov, 2002], dark matter
couples much more strongly to ¢ than “ordinary” matter. Such a stronger
coupling to dark matter, which is not constrained by usual equivalence prin-
ciple experiments, follows assuming more general quantum corrections in the
dark matter sector of the theory, i.e. corrections such that the dark mat-
ter mass m,,(¢), instead of levelling off, either vanishes or keeps increasing
at strong bare coupling: m,(¢) x e“»?, so that a,, = ¢, is a (negative or
positive) constant. In [Gasperini, Piazza and Veneziano, 2002] (but see also
[Amendola and Tocchini-Valentini, 2001]) it has been shown that under the lat-
ter assumption (i.e. with a positive coupling parameter a,,, > 0) the dilaton can
play the role of quintessence, leading to a late-time cosmology of accelerated
expansion. By equation (3.34) we have ¢ = @enq — @mp, where p is now counted
from the end of the radiation era. Given that about nine e-folds separate us
from the end of the radiation era, we see that such an evolution might (if |oy,|
is really of order unity) have a significant effect on the present value of ¢ (when
compared with the value at the end of inflation, i.e. cgeng ~ In(1/dg) ~ 10).
However, the running of ¢ during the matter era changes the standard recent
cosmological picture and is therefore constrained by observations. In fact, by
equation (3.33), the total matter-era equation of state parameter wy in the
presence of the dilaton reads wyo; = (¢!,)?/3. Accordingly, the matter den-
sity varies as p oc a 3(1twet) = q=B+(¥n)*)  possibly affecting the standard
scenario of structure formation as well as the global temporal picture between
now and the epoch of matter-radiation equality. The compatibility with phe-
nomenology therefore puts constraints on the magnitude of ¢! ? = @, (¢)2. In
[Gasperini, Piazza and Veneziano, 2002] wio, < 0.1, i.e. o2, < 0.3,y < 0.54,
was suggested to be the maximal deviation one can roughly tolerate during
the matter era. More recently, the constraints on the structure formation in
dilatonic quintessence model have been investigated by [Amendola et al., 2002].
For a last accelerating period starting out at redshift z ~ 1 the bound is in fact
more stringent: a,, < 0.3 . Curiously enough, [Amendola et al., 2002] find also
that in the quintessential model of [Gasperini, Piazza and Veneziano, 2002] to
be considered in the next chapter, the accelerating phase may start as early as
z ~ 5. If it starts at redshifts larger that z ~ 1.5 then a lower bound on o, is
also needed! The intuitive reason is that the contribution of the dilaton to the
gravitational force of non relativistic matter ease the formation of structure.

In any case, the displacement of ¢ during matter era smaller than the disper-
SiON Pend — Pcl,end ~ Pelend Produced by quantum fluctuations during inflation,
equation (3.28).

In this context one should also consider the attraction effect of a negative
pressure component, either in the form of a ¢-dependent vacuum energy (dila-
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tonic quintessence) or in the form of any other, p-independent component (such
as a “genuine” cosmological constant). Of course, the present recent (z < 1)
accelerated expansion phase is very short (in “p-time”) and sensible changes of
the dilaton value since the end of matter domination are not expected. Still,
it is crucial to estimate the present dilaton velocity ¢f since it is related to
the cosmological variations of the coupling constants (see next section). In the
general case where both non-relativistic matter and (possibly p-dependent) vac-
uum energy density V(p) are present, the value of ¢ predicted by our model
is obtained by applying equation (3.31) (in the slow-roll approximation):

(Qm + Q) (1 — wO)‘PB = (Qm + 29V)‘P6 = —Qnay —4Qvay. (3.35)

In the above expression 2, and Qy are the non-relativistic (dark) matter-
and the vacuum-fraction of critical energy density p. = (3/2)m%H? respec-
tively, and the already mentioned prescriptions ay = ialn V(p)/0p, Py =
—pv = —V(y) have been used.

The value of ¢ is therefore some combination of the values of a;, and
ay. We can have two classes of contrasting situations: In the first class, the
dilaton couples “normally” (i.e. weakly) both to dark matter and to dark
energy, i.e. both ap, ~ —bpce ™ < 1 and ay < 1 and equation (3.35)
implies ¢ < 1. In the second class, the dilaton couples more strongly to
some type of dark matter or energy, i.e. either (or both) «a,, or/and ay is
of order unity so that ¢ = O(1). The second case is realized in the scenario
of [Gasperini, Piazza and Veneziano, 2002]. In the context of this scenario we
have an exponential dependence of the potential on ¢, V() ~ Vie™ so that
ay ~ —(c/4) and

i Qv —aply < ¢

T

The last inequality follows from the bound «,, > ¢/2 (which is a necessary

condition to have positive acceleration in the model of [Gasperini, Piazza and
Veneziano, 2002]) and the reasonable bound €, > 0.25.

In the present work, we wish, however, to be as independent as possible from
specific assumptions (as the ones used by [Gasperini, Piazza and Veneziano,
2002]). Therefore, rather than insisting on specific (model-dependent) predic-
tions for the present value of ¢f, we wish to find the (model-independent) upper
bounds on the possible values of ¢f set by current observational data. There
are several ways of getting such phenomenological bounds, because the exis-
tence of a kinetic energy (and pressure) associated to dy/dt = H¢' has several
observable consequences. A rather secure bound can be obtained by relating
the value of ¢’ to the deceleration parameter q = —da/dQ. In the general
class of models that we consider, the cosmological energy density and pressure
have (currently) three significant contributions: dark matter ( Q,, = pm/pc),
dark energy (Qy) and the kinetic effect of a scalar field (Qx = pi/p. with
pr = (M3 /2)(dp/dt)? = (M /2)H?¢'* so that Q = ¢'*/3). We assume (con-
sistently with recent cosmic background data) that the space curvature is zero.
Therefore we have the first relation

O+ Qv + Qe =1=Qp +Qp +¢'%/3. (3.37)

(3.36)
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The deceleration parameter is given by the general expression 2g = ¥ 4Q4(1 +
3wy4). Using wy, =0, wy = —1 and wy, = +1, we get

4
2g = Qn — 2Qy + §<p'2. (3.38)

Using the relation (3.37) above to eliminate 2y we get the following expression
for ¢ 2 in terms of the observable quantities ¢ and Q,,

PP =1+q— ng (3.39)

The supernovae Ia data [A. Riess et al, 1998; Perlmutter et al., 1999] give
a strict upper bound on the present value ¢o: go < 0. A generous lower bound
on the present value of €,, is €,,0 > 0.2 !. Inserting these two constraints in
equation(3.39) finally yields the safe upper bound

oh? < 0.7, ie. |gh| <0.84. (3.40)

To summarize, quite different rates of evolution for the dilaton are pos-
sible. A very slow variation is expected whenever dilaton couplings to both
dark energy and dark matter follow the “normal” behaviour (3.3). Otherwise,
dilaton variations on the Hubble scale are expected. However, cosmological
observations set the strict upper bound (3.40) on the present time variation
of . For the purpose of the present section (evaluating the current loca-
tion of the dilaton) these two alternatives do not make much difference be-
cause the vacuum-dominance era has started less than about 0.7 e-folds away
(In(1 + 2z4) with z, < 1). Therefore, ¢ did not have enough “p-time” , during
vacuum dominance, to move much, even if it is coupled to vacuum energy with
ay ~ —(c/4) ~ 1.

Finally, we conclude from this analysis that, to a good approximation (and
using the fact that the phenomenology of the matter-era constrains the dark-
matter couplings of the dilaton to be rather small), the value of ¢ now is
essentially given by the value @enq at the end of inflation, i.e. by equation (3.24).

3.2 Deviations from general relativity induced by a
runaway dilaton

3.2.1 Composition-independent deviations from general rela-
tivity

The previous section has reached the conclusion that present deviations from
general relativity are given, to a good approximation, by the values of the
matter-coupling coefficients a4 (¢) given by equation (3.30) calculated at ¢ ~
©end as given by equation (3.28). Let us now see the meaning of this result in
terms of observable quantities.

Let us first consider the (approximately) composition-independent devia-
tions from general relativity, i.e. those that consist in violations of the “strong”

!See, e.g., the review of global cosmological parameters (chap. 17) in [Groom et al., 2000]
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equivalence principle. As reviewed in Section 1.2, most composition-independent
gravitational experiments (in the solar system or in binary pulsars) consider the
long-range interaction between objects whose masses are essentially baryonic
(the Sun, planets, neutron stars). As argued in Section 1.3, [equation (1.94)]
the relevant coupling coefficient a4 is then approximately universal and given
by the logarithmic derivative of the QCD confinement scale Aqcn(y), because
the mass of hadrons is essentially given by a pure number times Aqcp(p). [We
shall consider below the small, non-universal, corrections to m4(¢) and a(y)
linked to QED effects and quark masses.] Remembering from equation (3.1) the
fact that, in the string frame (where there is a fixed cut-off linked to the string
mass M, ~ (o/)~'/?) the gauge coupling is dilaton-dependent (97> = Br(p)),
we see that (after conformal transformation) the Einstein-frame confinement
scale has a dilaton-dependence of the form

Aqen(p) ~ CY2 B2 () exp[—8n2 by ' Br(y)] M, (3.41)

where b3 denotes the one-loop (rational) coefficient entering the Renormaliza-
tion Group running of gr. Here Bp(p) denotes the coupling to the SU(3)
gauge fields. For simplicity, we shall assume that (modulo rational coefficients)
all gauge fields couple (near the string cut off) to the same Bp(p). This yields
the following approximately universal dilaton coupling to hadronic matter

M, 1
Qhad (@) ~ |:1n (AQCD> + 2

We recall that the quantity anaq(¢), which measures the coupling of the dilaton
to hadronic matter, should not be confused with any ”strong” gauge coupling,
as = g2/4w. Numerically, the coefficient in front of the R.H.S. of (3.42) is of
order 40. Consistently with our basic assumption (3.3), we parametrize the ¢

dependence of the gauge coupling g2 = Bgl as

dIn By (¢)
0 '

(3.42)

Bo(p) = Bp'(+00) [1 — bre . (3.43)

Note that, like by (see section 3.1.1), also b is expected to be smallish [~
B! (+00) or, equivalently, ~ C' in the notations of (3.3)] and typically the
ratio by /by is of order unity. We finally obtain

Ohad(p) =~ 40bp ce™ % (3.44)

We can now insert the estimate (3.28) of the value of ¢ reached because of
the cosmological evolution. Neglecting the O(1) renormalization factor due to
quantum noise, we get the estimate

b 4
ahad(‘Pend) ~ 3.2 b—F 5;[+2 s (3.45)
2\ C

br \? i3
aﬁad(‘ﬁend) ~ 10 (m) 5]7?_2 - (346)
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As said above, it is plausible to expect that the quantity ¢ (which is a ratio)
and the ratio bp/by are both of order unity. This then leads to the numerical
8

estimate o, ~ 106752, with 6y ~ 5 x 107°. An interesting aspect of this
result is that the expected present value of aﬁad depends rather strongly on the
value of the exponent n (which entered the inflaton potential V(x) «x x™). In
the case n = 2 (i.e. V(x) = 5 m2 x?) we have of y ~ 2.5 x 1078, while if n = 4
(V(x) = 1 Ax*) we have o, 4 ~ 1.8 x 1075.

These numbers satisfy the present experimental limits on SEP violations
reviewed in Section 1.2. Concerning solar-system (post-Newtonian) tests it
has been shown that the two main “Eddington” parameters y —1 and 8 — 1
measuring post-Newtonian deviations from general relativity are linked to the
dilaton coupling anaq(¢) by equations (1.57) and (1.58):

2
(0%
y—l=-—2——had ~ 94,2 (3.47)
1+ a}21ad e
1 O‘ilad a%ad 1 ! 2
ﬁ —1=3 = 5 Ohad @had > (3'48)

2 (1 +a%ad)2 2

where of 4 = Oanaqa(p)/ 0.

From equation (3.44) we see that of,; ~ —canag, so that the deviation
B —1is O(cad,;) and thereby predicted to be too small to be phenomeno-
logically interesting. This leaves v — 1 o~ —20a?_, as the leading observable
deviation. We have seen that the best current solar-system limit on v — 1
comes from Very Long Baseline Interferometry measurements of the deflection
of radio waves by the Sun and is (approximately) |y — 1| < 2 x 1074, corre-
sponding to a2,y < 107 [equation (1.70)]. In addition to solar-system tests, we
should also consider binary-pulsar tests which provide another high-precision
window on possible deviations from general relativity. They have been ana-
lyzed in terms of the two quantities ap,q (denoted ) and o, (denoted 3) in
[Damour and Esposito-Farése, 1998]. The final conclusion is that the binary-
pulsar limit on apaq is of order o ; < 1073,

At this stage it seems that the runaway scenario explored here is leading to
deviations from general relativity which are much smaller than present experi-
mental limits. However, we must turn our attention to composition-dependent
effects which turn out to be much more sensitive tests.

3.2.2 Composition-dependent deviations from general relativ-
ity
Let us then consider situations where the non-universal couplings of the dilaton
induce (apparent) violations of the equivalence principle. Let us start by consid-
ering the composition-dependence of the dilaton coupling a4, equation (3.30),
i.e. the dependence of a4 on the type of matter we consider. As we saw in Sec-
tion 1.3, at the Newtonian approximation the interaction potential between par-
ticle A and particle B is —G 4p m 4 mp/r ap where [Damour and Polyakov, 1994]

GAB:G(1+aAOéB). (3.49)
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Here, G is the bare gravitational coupling constant entering the Einstein-frame
action (3.7), and as = aa(p) is the strength of the dilaton coupling to A-
particles, taken at the present (cosmologically determined) VEV of ¢. The
term a4 ap comes from the additional attractive effect of dilaton exchange.
Two test masses, made respectively of A- and B-type particles will then fall
in the gravitational field generated by an external mass mg with accelerations
differing by

(%> EQM >~ (aA—aB)aE. (350)
a ) AB aps +ap

We have seen above that in lowest approximation a4 >~ ap,q does not depend on
the composition of A. We need, however, now to retain the small composition-
dependent effects to a4 linked to the (p-dependence of QED and quark con-
tributions to m4. This has been investigated in [Damour and Polyakov, 1994]
with the result

(5).= G [ons (50) woma () w2 (),

(3.51)

where (AX)4p = X4 — X, where B = N+Z is the baryon number, D = N—Z
the neutron excess, E = Z(Z — 1)/(N + Z)'/3 a quantity linked to nuclear
Coulomb effects, and where M = m/u denotes the mass in atomic mass unit,
u = 931.49432 MeV. It is difficult (and model-dependent) to try to estimate the
coefficients Cp and Cp. It was argued in [Damour and Polyakov, 1994] that
their contributions to (3.51) is generically expected to be sub-dominant with
respect to the last contribution, o< C'g, which can be better estimated because
it is linked to the (-dependence of the fine-structure constant e? o B;l(go).
This then leads to the numerical estimate Cr ~ 3.14 x 10~2 and a violation of
the universality of free fall approximately given by

(), =oraal(5) - (2)) o

The values of B/M, D/M and E/M have been computed in [Damour, 19965).
For mass-pairs that have been actually used in recent experiments (such as
Beryllium and Copper), as well as for mass-pairs that are planned to be used in
forthcoming experiments (such as Platinum and Titanium) one finds: (E/M)cy—
(E/M)pe = 2.56, (E/M)p; — (E/M)Ti = 2.65. Using the average estimate
A(E/M) ~ 2.6, we get from (3.52) and (3.46) the estimate

Aa -5 2 —4 [ br ? i

Note also (from (3.47)) the link between composition-dependent effects and
post-Newtonian ones

(%) ~—26x105(y—1). (3.54)
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As current tests of the universality of free fall (UFF) have put limits in the
10712 range (e.g. (Aa/a)Becu = (—1.9 £2.5) x 107'2 from [Su et sl., 1994]),
we see from equation (3.54) that this corresponds to limits on v — 1 or o2, in
the 10~ range. Therefore tests of the UFF put much more stringent limits on
dilaton models than solar-system or binary-pulsar tests.

If we insert the estimate d ~ 5x 1075 in (3.53) we obtain a level of violation
of UFF due to a runaway dilaton which is

A 2

213 (b—F) x 10712 forn =2, (3.55)
a by c

A 2

2%~ 0.908 (b—F> x 107 forn =4. (3.56)
a by c

At face value, one is tempted to conclude that a scenario with n = 4 (i.e.
V(x) o x*) tends to be too weak an attractor towards ¢ = +oco to be naturally
compatible with equivalence-principle tests. [See, however, the discussion be-
low.] On the other hand, the simple scenario n = 2 (V(x) = %mi x?) is quite
appealing in that it naturally provides enough attraction towards ¢ = +oc to
be compatible with all existing experimental tests. At the same time it suggests
that a modest improvement in the precision of UFF experiments might discover

a violation caused by a runaway dilaton.

3.2.3 Cosmological variation of “constants”

Let us now consider another possible deviation from General Relativity and the
standard model: a possible variation of the coupling constants, most notably
of the fine structure constant e?/hc on which the strongest limits are available.
We will discuss first the effects due to the cosmological time-variation of the
homogeneous component of ¢ and, in the next subsection, the possible spatial
(and time) variations due to quantum fluctuations of ¢ as they got amplified
during inflation.

Consistently with our previous assumptions we expect e? Bgl(tp) so that,
from (3.43),

e%(p) = €*(+00) [1 — bpe ). (3.57)

The present logarithmic variation of e? (using again dp = H dt; ¢’ = dip/dp) is
thus given by

dlne? _ dlne?
Hdt dp

~bpce gy, (3.58)

where the current value of ¢, ¢, is given in general by equation (3.35). Us-
ing equation (3.44), we can rewrite the result (3.58) in terms of the hadronic
coupling:

dlIne? 1

~ !
T S haath (3.59)
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As said in section 3.1.2, we have basically two alternatives concerning the
current coupling of the dilaton to the dominant energy sources in the universe.
These two alternatives lead to drastically different predictions for the current
value of the rate of variation of the fine-structure constant. We shall consider
these two alternatives in turn.

In the conservative case where the dilaton does not play any special role in
the present accelerated phase of the universe (ay ~ 0) nor does it have any
stronger coupling to dark matter than to visible matter (o, ~ —b, ce )
the dilaton “velocity” ¢ is exponentially suppressed ( so that, from (3.37),
Qpy ~1—Q,,) and by equation (3.35) one obtains

dlne? Qm Q
~ — b ~“a,, ~ m
H di Q,, + 20y Fee e (¥) 2-Q,,

2

bp by, e, (3.60)

An indicative value for the ratio Q,,/(Qm + 2Qv) ~ Q,,/(2 — Qp), by taking
for instance Q, = 0.3, is 0.18. As above, it is useful to relate (3.60) to the
estimate (3.44) for apaq. This yields

dlne? 1 Qn b o
= 2 7~ Ohad -
H dt (40)2 2 — Q,, bp

(3.61)

In terms of the UFF level Aa/a predicted by our model in (3.53) we see also
that
dlne? N Qm b_m &
Hdt = " 2—Qubrp a

(3.62)

Even if the universe were completely dominated by dark matter (2, = 1) we
see, assuming that by, /bp is of order unity, that current experimental limits
on UFF (Aa/a < 107'2) imply (within dilaton models) that |dlne?/dt| <
1071 H ~ 1072 yr~! (the sign of d1ne?/dt being given by the sign of by, /br).
This level of variation is much smaller than the current best limit on the time
variation of €2, namely |dIne?/dt| <5 x 10717 yr~! ~ 5 x 1077 H, as obtained
from an analysis of Oklo data [Shlyakhter, 1976], [Damour and F. Dyson, 1996].
(Note that the assumption-dependent analysis of Ref. [Olive et al., 2002] gives
a limit on the variation of e? which is strengthened by about two orders of
magnitude.)

The situation, however, is drastically different if we consider the alternative
case where the dilaton coupling to the current dominant energy sources does
not tend to triviality, as in the case of a ¢-dependent vacuum energy V(p) =
Vo 4+ Vie™“? when the first term is zero or negligible. In such a case the dilaton
shares a relevant part of the total energy density and more significant (though
still quite constrained by UFF data) variations of the coupling constants are
generally expected. A general expression for the dilaton “velocity” is given in
eq. (3.39) in terms of observable quantities. Using equations (3.39) and (3.59)
one can relate the expected variation of the electromagnetic coupling constant
to the hadronic coupling:

dln e?
Hdt

~+ O‘:gd V1+qo—30m/2. (3.63)
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We can also use the estimate (3.45) relating anaq to the density fluctuations
generated during inflation. We obtain

dln 2
Hdt

bp =L
~+8x 1072 /1+ qo — 32 /2 b—FC 52 (3.64)
A

However, in view of the theoretical uncertainties attached to the initial
conditions xin and i, used in the estimate (3.45), as well as the ones associated
to the order unity ratio bg/(bxc), it is more interesting to rewrite our prediction
in terms of observable quantities. Using again the link equation (3.53) between
anhad and the observable violation of the universality of free fall (UFF) the above
result can be written in the form

dln e?
Hdt

A
~+35x107% /T + qp — 32 /2 10127“ . (3.65)

Note that the sign of the variation of e? is in general model-dependent
(as it depends both on the sign of by and the sign of ¢f). Specific classes of
models might, however, favour particular signs of de?/dt. For instance, from
the point of view of [Veneziano, 2002] one would expect the O(e~%) terms in
equation (3.3) to be positive, which would then imply that br is positive. If
we combine this information with the prediction equation (3.36) of the model
[Gasperini, Piazza and Veneziano, 2002] implying that ¢’ is also positive, we
would reach the conclusion that e? must be currently increasing.

Independently of this question of the sign, we see that equation (3.65) pre-
dicts an interesting link between the observational violation of the UFF (con-
strained to Aa/a < 10712), and the current time-variation of the fine-structure
constant. Contrary to the relation (3.62), obtained above under the alternative
assumption about the dilaton dependence of the dominant cosmological energy,
which predicted a relation linear in Aa/a, we have here a relation involving
the square root of the UFF violation (such a relation is similar to the result of
[Damour, Gibbons and Gundlach, 1990] which concerned the time-variation of
the Newton constant).

The phenomenologically interesting consequence of equation (3.65) is to pre-
dict a time-variation of constants which may be large enough to be detected by
high-precision laboratory experiments. Indeed, using Hy ~ 66 km/s/Mpc, and
the plausible estimates Q,, = 0.3, go = —0.4, equation (3.65) yields the numeri-
cal estimate dIne?/dt ~ 40.9 x 1076, /102Aa/a yr~!. Therefore, the current
bound on UFF violations (Aa/a ~ 107'2) corresponds to the level 10~ 6yr=1,
which is comparable to the planned sensitivity of currently developed cold-atom
clocks [Salomon et al., 2001]. [Present laboratory bounds are at the 10~ 4yr—!
level [Prestage, Tjoelker, and Maleki, 1995, Salomon et al., 2001].] Note that if
we insert in equation (3.65) the secure bounds €2, > 0.2 and ¢y < 0 (leading
to the limit equation (3.40)), we get as maximal estimate of the time variation
of the fine-structure constant dIne?/dt ~ +2.0 x 1076 ,/1012Aa/ayr—!. We
note also that the upper limit on the variation of e? given by the Oklo data, i.e.
|dIne?/dt| <5 x 10717 yr=! [Shlyakhter, 1976], [Damour and F. Dyson, 1996],
“corresponds” to a violation of the UFF at the level ~ 10713,
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In this respect, it is interesting to consider not only the present variation
of € (the only one relevant for laboratory experiments), but also its variation
over several billions of years. (We recall that the Oklo phenomenon took place
about two billion years ago, and that astronomical observations constrain the
variation of e? over the last ten billion years or so). In particular, an interesting
question is to see whether our model could reconcile the Oklo limit (which
corresponds to a redshift z ~ 0.14) with the recent claim [Webb et al., 2001] of
a variation Ae?/e? = (—0.72 £ 0.18) x 10 ° around redshifts z ~ 0.5 — 3.5 as
proposed in [Sandvik, Barrow and Magueijo, 2002, Olive and Pospelov, 2002].
The only hope of reconciling the two results would be to allow for a faster
variation of e? for redshifts z > 0.5. Such recent redshifts have (apparently)
been connected to a transition from matter dominance to vacuum dominance.
Let us see whether taking into account this transition might allow for a large
enough change of €2 around redshifts z ~ 0.5 — 3.5. We must clearly assume
the “strong coupling” scenario a;,, = O(1). In this scenario, the variation of
¢ during the matter era is given by equation(3.34). Neglecting, for simplicity,
the transient evolution effects localized around the matter-vacuum transition
(and treating both ¢, = —ay, and ¢, = ¢ as constants), the solution giving
the recent cosmological evolution of ¢ reads ¢ — 9 = —¢{ In(1 + z) during
the vacuum era, and ¢ — o = —¢jIn(1 + 2z,) — ¢, In[(1 + 2)/(1 + 2,)] during
the matter era (the index 0 refers to the present epoch, i.e. z = 0; z, denotes
the transition redshift). Inserting this change in equation(3.57) leads to the
following expression for the cosmological change of the fine-structure constant:

e2 — 2 . B 1+2z Aa
2 0 — —sign(bg) 3.5 x 1078 [y In(1 + 2,.) + ¢, In T Z*] 10127 :
(3.66)

Here, we have written the result for the matter era. During the vacuum era the
bracket is simply [¢f In(1 + z)]. Remembering that the absolute value of ¢/, is
(like that of ¢} ) observationally constrained to be smaller than /0.3 ~ 0.55
(and that ¢f is also constrained by |¢},| < 0.84), we see that there is no
way, within our model, to explain a variation of e? as large as Ae?/e? =
(—0.72 £ 0.18) x 10™° around redshifts z ~ 0.5 — 3.5 [Webb et al., 2001]. In
our model, even under the assumption that UFF is violated just below the
currently tested level, such a change would have to correspond to a value
|oh,| > 2, entailing observationally unacceptable modifications of standard cos-
mology. [For instance, in the model [Gasperini, Piazza and Veneziano, 2002]
a value as large as a;, > 1 already leads to a pathological behaviour (“total
dragging”) where all the components scale like radiation.] This difficulty of rec-
onciling the Oklo limit with the claim of [Webb et al., 2001] was addressed in
[Olive and Pospelov, 2002, Sandvik, Barrow and Magueijo, 2002] within a dif-
ferent class of models, namely with a field ¢ which does not couple universally to
all gauge fields F},,,, as the dilaton ¢ is expected to do. The fact that the field ¢
in [Olive and Pospelov, 2002] (or % in [Sandvik, Barrow and Magueijo, 2002])
is assumed to couple only to the electromagnetic gauge field drastically changes
our equation (3.53) and allows one to satisfy the UFF limit Aa/a < 107'2,
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for a stronger coupling of ¢ to electromagnetism than in our class of mod-
els, i.e. (in our notation) for a larger d1ln Bp(p)/dp. This explains why Ref.
[Olive and Pospelov, 2002] could construct some explicit (but fine-tuned) mod-
els in which all observational limits (UFF, Oklo,...) could be met and still allow
for a variation of 2 as strong as the claim[23]. The maximal variation predicted
by equation(3.66) for redshifts corresponding to the matter era (obtained when
Aa/a = 107'2 and ¢!, = +1/0.3; and assuming a smaller value of @ to be
compatible with the Oklo constraint), is of order Ae?/e? = £1.9 x 106, This
is only a factor ~ 4 below the claim [Webb et al., 2001] and is at the level of
their one sigma error bar. Therefore a modest improvement in the observa-
tional precision (accompanied by an improved control of systematics) will start
to probe a domain of variation of constants which, according to our scenario,
corresponds to an UFF violation smaller than the 10712 level.

3.2.4 Spatio-temporal fluctuations of the “constants”

We now turn to the second possible source of spatial-temporal variations for e?
in our model, the quantum fluctuations of the dilaton generated during inflation.
Within linear perturbation theory, the relevant calculation may be summarized
as follows.

Consider a flat FRW universe ds? = —dt? + a(t)?S;dz? . The dilaton
fluctuations can be expanded in Fourier components d¢yi of given comoving
momentum k as follows:

1 1 kx
o / d3k Sy (1) ™, (3.67)

dp(x,t) = @)

where ¢ is the cosmological time. Each Fourier mode dpy “leaves” the horizon
during inflation with an amplitude ~ He(k)/v/2k3 [Liddle and Lyth, 2000]
where, by definition, ﬁex(k) is the value of the dimensionless Hubble expansion
rate as ka ' equals H during inflation (note that we denote here ﬁex what was
denoted H, above). Well after the exit (k < aH) the amplitude of each mode
“freezes out”, i.e. remains roughly constant, until it reenters the horizon during
the post-inflationary epoch (ka,,' ~ Hy.). After re-entry the amplitude starts
to damp out as a~!. For a given Fourier mode d¢y (t), the latter damping effect
is described by the piecewise function

1 if ag ' Hy k< (2 +1)1/2
f2(k) =< a2HZ (2 + 1)k if  (z+1)Y2 < ay'Hy 'k < 102
10 2agHy (z + 1)k 1 if ag'Hy'k > 102

(3.68)

Here the cosmological redshift z = ag/a(t) — 1 has been introduced in replace-
ment of the cosmological time t. The first case refers to Fourier modes that
have not reentered yet at redshift z and whose amplitudes are still frozen. The
second and third cases refer to modes that reenter during matter and radia-
tion domination respectively. Putting all together, and assuming a gaussian
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probability distribution for the perturbations, we have:

772
oty spe@) = =8 Ly ) P0c-1). (369

Possible spatial/temporal variations of e? induced by the fluctuations of the
dilaton will be given by

Aﬁuc 62

e2

_ dln 2

(0,85 %1 1) de

Aﬂucw|(x’t; x’,t’) , (370)

where the r.m.s A"y between two events (x,t) and (x',#') is defined as follows
A2 = ([ 1) — e, 1))

~ . | |
- (Z?;(?, / % [fZ(k)2 + fo (k)% = 2, (k) for () €O )] (3.71)

- e [T Ll - e 2 0r [1- R

Here, z = |x — x/| is the coordinate distance between the two events and,
consistently with the slow-roll approximation, the Hubble expansion rate at
exit has been assumed to be scale-invariant: ﬁex(k) ~ I:Tex ~3x1075.

If one considers spatial fluctuations over terrestrial or solar system proper
length scales | = apk ™! < Hy 1 at the present time ¢ = ¢ = o, the first square
brackets in (3.71) vanishes and one can expand the sine function at small kz
obtaining

I/_jx Hql AHUC62 B R
ANl = 27 %; - =~ 1072 apaq Hex Hol.  (3.72)
l;2=0

As expected, these variations are extremely small, Aflu¢e? /2| I z=0 ~ 10733 [ /km.
It is also interesting to compare dilaton fluctuations at different redshifts along
a comoving observer wordline. By putting z ~ 0 in (3.71) the second term in
the square brackets vanishes and one has:

oo 1 108 ,1'/?
Aﬂuc o~ ex -~ 1 1 _ 2
ﬁex z 22
afe 2 ) o

It is slightly more complicated to compare dilaton fluctuations between
“now” and events at redshift z along a null ray. Expanding in powers of z
around z = 0 one gets from (3.71), after a straightforward calculation:

H, |1 [7 2
Aflue ~ == —\/j e A
vl 2 [2 37 \/21Z +

(3.74)
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Numerically, at redshift z ~ 1, the effects of dilatonic fluctuations are given
by Ayl ~ He/(27) ~ 5 x 1076, This is to be contrasted with the
effects of the cosmic, homogeneous evolution which yields Ay|,=1 ~ ap,. In
the “normal” case where a,;, ~ e~ ~ (5}1{/(n+2), the two effects, though a
priori unrelated, are related in our scenario , when n = 2. Indeed, if n = 2,
53/ — 51~ 5 x 1077 is linked to Hey/(2) via 8(xex) = AHey/(27) with
A= (8/3)V/0,V = (8/3)(x/n) ~ 40/(3y/n) ~ 10. On the other hand, in the
case where ¢ is strongly coupled to dark matter, the homogeneous evolution
é<p| 2=1 =~ au ~ 1 is parametrically larger than the fluctuations Af%Cyp|,_; ~
Hg./(2T).

To conclude on this subsection, we see that the inhomogeneous space-time
fluctuations of the fine-structure constant are typically too small to be observ-
able (if the limits from UFF are already satisfied), being suppressed, relative
to their natural values Hyl, Hot, by the small factor ahadﬁex.

3.3 Summary and conclusion

We have studied the dilaton-fixing mechanism of [Damour and Polyakov, 1994]
within the context where the dilaton-dependent low-energy couplings are ex-
tremized at ¢ = 400, i.e. for infinitely large values of the bare string coupling
g2 = e? ~ . [The crucial coupling to the inflaton, say A(p) in equation(3.14),
must be minimized at ¢ — 400; the other couplings can be either mini-
mized or maximized there.] This possibility of a fixed point at infinity (in
bare string coupling space) has been recently suggested [Veneziano, 2002], and
its late-cosmological consequences have been explored in [Gasperini, Piazza
and Veneziano, 2002]. We found that a primordial inflationary stage, with
inflaton potential V(x) = A(¢) x™/n, was much less efficient in decoupling a
dilaton with least couplings at infinity than in the case where the least cou-
plings are reached at a finite value of ¢ (as in [Damour and Polyakov, 1994,
Damour and Vilenkin, 1996]). This reduced efficiency has interesting phenomeno-
logical consequences. Indeed, it predicts much larger observable deviations from
general relativity. In the case of the simplest chaotic potential [Linde, 1990]
V(x) = 3m2(p) x?, we find that, under the simplest assumptions about the
pre-inflationary state, this scenario predicts violations of the universality of
free fall (UFF) of order Aa/a ~ 5 x 107* 6% where ég is the density fluctua-
tion generated by inflation on horizon scales. The observed level of large-scale
density (and cosmic microwave background temperature) fluctuations fixes dy
to be around 5 x 10~° which finally leads to a prediction for a violation of the
UFF near the Aa/a ~ 10712 level. This is naturally compatible with present
experimental tests of the equivalence principle, and suggests that a modest im-
provement in the precision of UFF tests might be able to detect a deviation
linked to dilaton exchange with a coupling reduced by the attraction towards
the fixed point at infinity. Because of the presence of unknown dimensionless
ratios (c,bp/by) in our estimates, and of quantum noise in the evolution of the
dilaton, we cannot give sharp quantitative estimates of Aa/a. However, we
note that dilaton-induced violations of the UFF have a rather precise signature
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with a composition-dependence of the form (3.51), with probable domination by
the last (Coulomb energy) term [Damour and Polyakov, 1994]. As explored in
[Damour, 19965] this signature is quite distinct from UFF violations induced by
other fields, such as a vector field. We note that the approved Centre National
d’Etudes Spatiales (CNES) mission MICROSCOPE [P. Touboul et al., 2001]
(to fly in 2004) will explore the level Aa/a ~ 10715, while the planned National
Aeronautics and Space Agency (NASA) and European Space Agency (ESA)
mission STEP (Satellite Test of the Equivalence Principle)[P. W. Worden, 1996]
could explore the Aa/a ~ 10718 level. Our scenario gives additional motivation
for such experiments and suggests that they might find a rather strong viola-
tion signal, whose composition-dependence might then be studied in detail to
compare it with equation (3.51).

In the case of inflationary potentials V(x) o< x™ with n > 2 our simplest

8
estimates predict a violation of the UFF of order Aa/a ~ 5 x 107*§ 5" which
is larger than 107!2. At face value this suggests that existing UFF experi-
mental data can be interpreted as favouring n < 2 over n > 2. However, we
must remember that our estimates have made several simplifying assumptions.
It is possible that the large quantum fluctuations of the inflaton in the self-
regenerating regime x > Xin, with xi, defined by equation (3.21), can give
more time for ¢ to run away towards large values, so that the effective value of
ein to be used in equation (3.24) turn out to dominate the first term in the
R.H.S. that we have used for our estimates. We leave to future work a study of
the system of Langevin equations describing the coupled fluctuations of ¢ and
x during the self-regenerating regime.

Finally let us note some other conclusions of our work.

We recover the conclusion of previous works on dilaton models that the most
interesting experimental probes of a massless weakly coupled dilaton are tests
of the UFF. The composition-independent gravitational tests (solar-system,
binary-pulsar) tend to be much less sensitive probes (as highlighted by the
relations (3.54), (3.61) and (3.62)).

However, a possible exception concerns the time-variation of the coupling
constants. Here the conclusion depends crucially on the assumptions made
about the couplings of the dilaton to the cosmologically dominant forms of
energy (dark matter and/or dark energy). If these couplings are of order unity
(and as large as is phenomenologically acceptable, i.e. so that (¢})? = 0.7), the
present time variation of the fine-structure constant is linked to the violation of
the UFF by the relation dIne?/dt ~ £2.0 x 10716 /1012Aa/ayr *. [The most
natural sign here being +, i.e. bg > 0, which corresponds to smaller e? in the
past, just as suggested by the claim [Webb et al., 2001].] Such a time variation
might be observable ( if Aa/a is not very much below its present upper bound
~ 10712) through the comparison of high-accuracy cold-atom clocks and/or via
improved measurements of astronomical spectra.

More theoretical work is needed to justify the basic assumption (3.3) of
our scenario. In particular, it is crucial to investigate whether it is natural to
expect that the sign of the crucial coefficient by in equation (3.15) be indeed
positive. [Recall that the general mechanism of [Damour and Polyakov, 1994] is
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an attraction towards “Least Couplings” while equation (3.3) with O(e=%) > 0
leads to largest couplings at infinity.] Note in this respect that the sign of the
other b;’s is not important as, once inflation has pushed e“? to very large values
e“end  the subsequent cosmological evolutions tend to be ineffective in further
displacing .



Chapter 4

Runaway dilaton as
quintessence

4.1 The accelerating Universe and the dilaton

According to recent astrophysical observations, our Universe, at least since a red
shift z ~ 1, appears to have undergone a phase of accelerated expansion'. This
result can be combined with the recent estimates of the average mass density of
the Universe [Bachall et al., 1999], 2, ~ 0.3 — 0.4 (in critical units), and with
recent measurements of the CMB anisotropy peaks [de Bernardis et al., 2000],
pointing at a nearly critical total energy density, Q7 ~ 1. One is then led
to the conclusion that the present cosmological evolution, when described in
terms of an effective fluid entering Einstein’s equations, should be (marginally)
dominated by a “dark energy” component p, characterized by a (sufficiently)
negative effective pressure, p, < —p;/3.

The simplest candidate for such a missing energy is a positive cosmological
constant A, of order H2, Hy being the Hubble parameter. Such an identification,
however, unavoidably raises a series of difficult questions. In particular: a)
Why is A so small in particle physics units? Explaining a finite but very small
value for A may turn out to be even harder than finding a reason why it is
exactly zero. This is the so-called fine-tuning problem for A, see for instance
[Weinberg, 1989]; and b) Why is A ~ pp,0, where py0 is the present value (in
Planck units) of the (dark) matter energy density? One may note in fact that,
during cosmic evolution, the cosmological constant, as well as any negative
pressure component, tends to overcome very rapidely the other components.
This is the so-called “cosmic coincidence” problem [Steinhardt, 1997].

At present, the most promising scenarios for solving (at least part of) the
above problems introduce a single scalar field, dubbed “quintessence” [Turner
and White, 1997; Caldwell, Dave and Steinard, 1998; Friemann and Vaga,

!See for instance [A. Riess et al, 1998; Perlmutter et al., 1999]. The observation of a even
farther supernova by [Riess et al., 2001] seemed at first to imply [Turner and Riess, 2001]
the acceleration period to have started not earlier than z ~ 1.  More recently,
[Amendola et al., 2002] have shown that data may be consistent with an acceleration peri-
od started as early as z ~ 5.
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1998] whose potential goes to zero asymptotically (leaving therefore just the
usual puzzle of why the “true” cosmological constant vanishes). The scalar
field slowly rolls down such a potential reaching infinity (and zero energy) only
after an infinite (or very long) time. While doing so, quintessence produces
an effective, time-dependent, cosmic energy density p, accompanied by a suf-
ficiently negative pressure, i.e. a sort of effective cosmological constant. By
making Acrp ~ H 2 time-dependent, this can naturally explain the smallness of
the present effective vacuum energy density. However, if, as in General Rela-
tivity, dust energy and an effective cosmological constant have so different time
dependence, it can hardly explain why A ~ p,,0 i.e. the “cosmic coincidence
problem” shows up. For a recent review of the relative merits of a cosmological
constant and quintessence, see [Binétruy, 2000].

As far as identifying quintessence is concerned, the inflaton itself could
be a candidate as recently proposed by [Peebles and Vilenkin, 1999] and by
[Peloso and Rosati, 1999]. But also more exotic possibilities have been consid-
ered, in particular some motivated by the wish to solve the above-mentioned
cosmic coincidence problem (see, for instance, [Hebecker and Wetterich, 2000],
[Amendola and Tocchini-Valentini, 2001] and References [1]). In any case, as is
the case for the inflaton, the quintessence field does not have, as yet, an obvi-
ous place in any fundamental theory of elementary particles. One should also
mention, at this point, that, if quintessence may help with the problems typical
of the cosmological constant interpretation, it is likely to create a new one of its
own: in order to play its role, the quintessence field must be extremely light and
can thus mediate a new long range (of order Hy!) force, which is strongly con-
strained observationally. This is an important constraint to be imposed on any
specific scalar field model of quintessence, either minimally or non-minimally
(see References [2]) coupled to gravity.

At first sight, the search for a quintessence candidate in particle physics
looks easier than the one for an inflaton. For instance, fundamental or effective
scalar fields with potentials running to zero at infinity are ubiquitous in super-
symmetric field theories and/or in string/M-theory. They are usually referred
to as moduli fields since, in perturbation theory, they parametrize the space of
inequivalent vacua and correspond to exactly flat directions (equivalently, to ex-
actly massless fields). Non-perturbative effects (e.g. gauge-theory instantons)
are expected to lift these flat directions, just preserving those that correspond
to small or vanishing coupling. Examples are the run-away vacua of supersym-
metric gauge theories (see, for instance, [Masiero, Pietroni and Rosati, 2000]
for quintessence models based on the latter possibility), or the dilaton modulus
¢ in the limit ¢ — —oo.

However, if we were to take one of these moduli as quintessence, we would
immediately run into the problem that the acceleration of the Universe should
be accompanied by a drift of interactions towards triviality. For Newton’s con-
stant, and even more so for the fine-structure constant, this kind of time varia-
tions is very strongly constrained [Uzan, 2002]. Furthermore, typical couplings
of moduli fields to ordinary matter are of gravitational order, and this creates
the problems described in Chapter 2 of new, unwanted long-range forces.

In this respect, the situation can be drastically improved by considering
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the case “e!® > 1, e/ < 1”7 considered in Section 2.1.1: the M-theory limit
where the 10-dimensional coupling e{®) is non-perturbative, while still keep-
ing the four-dimensional effective couplings perturbative [Witten, 1996]. Even
then, the moduli would presumably freeze out in a typical (and cosmologically
tiny) particle-physics time, and therefore cannot implement the conventional,
slow-roll quintessential scenario. In spite of these difficulties, unconventional
models of quintessence based on the stabilization of the dilaton in the pertur-
bative regime are not completely excluded, as recently discussed by one of us
[Gasperini, 2001].

There is, however, another possibility for making the dilaton a candidate for
quintessence and it is right the strong (4-dimensional) coupling regime of Section
2.3. As we have already mentioned, the region of large negative ¢ corresponds
to the trivial vacuum. The idea that the Universe may have started, long before
the big bang, in this region is actually the basis of the so-called pre-big bang
scenario in string cosmology (for recent reviews see the references collected
in [3]). Here we propose instead the possibility that the dilaton may act as
quintessence at very late times (such as today), not by evolving towards —oo
and triviality, but by going towards +oo and strong coupling.

In this picture there is naturally an asymptotic decoupling mechanism of
ordinary matter to the dilaton, whose effective mass goes to zero at late times.
The problem remains, of course, of explaining why the cosmological constant
vanishes in superstring/M-theory, not only at zero coupling where supersymme-
try protects it, but also at infinite (bare) coupling. Possibly, some new, stringy
symmetry can explain this. It is simply assumed to be the case in this thesis.

As the dilaton is non-universally coupled to different types of matter fields,
its coupling to ordinary matter can be asymptotically tiny [as in our basic
assumptions (2.31)] and much stronger to typical dark matter candidates, such
as the axion as first suggested by [Damour, Gibbons and Gundlach, 1990]. In
that case, the interplay of the dark-matter dilatonic charge and of the dilaton
potential leads to an accelerated expansion in which the relative fraction of
dark energy and dark matter remains fixed (and of order 1), thus offering a
possible explanation of the cosmic coincidence, as we will illustrate through
explicit examples.

The chapter is a review of the work [Gasperini, Piazza and Veneziano, 2002]
and is organized as follows. In Section 4.2 we present the effective string cos-
mology equations, in the small curvature —but arbitrary coupling— regime, with
generic matter sources non-minimally coupled to the dilaton. In Section 4.3.1
we discuss analytically a possibile late-time attractor characterized by a con-
stant positive acceleration and a fixed ratio of dark matter and dark energy. In
Section 4.3.2 we provide a semi-quantitative description of the previous phase,
during which the dilaton potential can be neglected. This phase is characterized
by a “focusing” of the energy densities of the various components of the cosmo-
logical fluid (which occurs before the epoch of matter-radiation equilibrium),
and by a subsequent “dragging” regime in which the dilaton energy density
tends to follow that of non-relativistic (dark) matter. We also discuss here the
main phenomenological constraints that have to be imposed on the scenario. In
Section 4.4 we consider a typical example of string cosmology model including
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radiation, baryonic and cold dark matter, and we present the results of explicit
numerical integrations. Our conclusions are summarized in Section 4.5.

4.2 Cosmological equations in the String and Ein-
stein frames

Our starting point is the string-frame, low-energy, gravi-dilaton effective action
[Green, Schwarz and Witten, 1987], to lowest order in the o’ expansion, but in-
cluding dilaton-dependent loop (and non-perturbative) corrections, encoded in
a few “form factors” (), Z($), a(¢), ..., and in an effective dilaton potential
V(¢) (see also [Damour and Nordtvedt, 1993, Damour and Polyakov, 1994]).
In formulae:

s = Mgy [0R26) (39) 1570

— /d4 F2 + T',n (¢, g, matter) (4.1)
167

Note the slight change of notations and conventions respect to the preceding
chapters. Here we follow those of [Gasperini, Piazza and Veneziano, 2002] also
because they are the same as those used by [Amendola et al., 2002] who calcu-
lated the perturbations in this scenario and find important constraints on the
parameters. Here the metric signature is (+,—, —, —), Rua A= BNI‘,,O/H—
and Ry, = Ry, ¢ We give in the following a “vocabulary” to pass from the
symbols above and those that follow in this chapter to those of Chapter 3:

Chapter 3 Chapter 4
B, = e ¥
2B:P +By = —Z(¢)

dp = k(p)dp/2 = db/(Mpv2)
O dark matter = Q(¢)/k(¢)

Following the basic strong coupling assumptions (2.31), we shall assume
that the form factors 1(¢), Z(¢$), a(¢p) approach a finite, physically interesting
limit as ¢ — 400 while, in the same limit, V' — 0.

The fields appearing in the matter action I';, are in general non-minimally
and non-universally coupled to the dilaton (also because of the loop correc-
tions [Taylor and Veneziano, 1988]). Their gravitational and dilatonic “charge
densities”, T}, and o, are defined as follows:

1 — ~ or 1 = ~
5\/ —g TN”’ % = —5 —g o, (42)
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and it is important to stress that, when & # 0, the gravi-dilaton effective theory
is radically different from a typical, Jordan-Brans-Dicke type model of scalar-
tensor gravity [Gasperini, 1999]. We shall give a prototype form of I';, in the
following section, after passing to the Einstein frame.

The variation of (4.1) with respect to g,, then gives the equations:

G + ' VY08 + [V 2 — /% +4"] V9,6
b5 (207 - 20— 0 7) (Vo — 20/ (V26) — V()] = NV T,
(4.3)

where éuv is the Einstein tensor, and a prime denotes differentiation with
respect to ¢. The variation with respect to ¢, using the trace of eq. (4.3) to
eliminate R, leads to the equation

(30" —2e2) (V29) + [ (29 = 2') + 9 (39" = 3 | (V)”
el 2PV V) + 22 (¢'T +5) =0 (4.4)

We shall assume an isotropic, spatially flat metric background (appropriate
to the present cosmological configuration), and a perfect fluid model of source.
In the cosmic-time gauge we thus set

G = ding [1,-22(F) 6], T = diag [p,—5 o]

p=9¢(), o=0a),

and one can easily check, combining the above equations, that the matter stress
tensor is not covariantly conserved (even in this frame), but satisfies the equa-
tion

(4.5)

p+3H(G+p) = %q's. (4.6)

For the purpose of this paper, and for an easier comparison with previous
discussions of the quintessential scenario, it is however convenient to represent
the dynamical evolution of the background in the more conventional Einstein
frame, characterized by a metric g,, minimally coupled to the dilaton, and
defined by the conformal transformation g,, = c%gu,,ew. Here ¢? parametrizes
the asymptotic behaviour of 1(¢),

cf = Jm_exp{=(9)}, (4.7)

and thus controls the asymptotic ratio between the string and the Planck scale,
M?2 = 2 M?. In the Einstein frame the action (4.1) becomes:

2 V()

M? k(¢)?
S = —Tp/d4x\/—_g [R—%(W)MM—]%
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1 [ Vg
16r ] " alg)

Fﬁu + Ty(, ¢ guve? , matter) (4.8)

where we have defined
K*(9) = 39" — 26" Z, V=ceV. (4.9)
For later use it is also convenient to define a canonical dilaton field by:

Mp
V2

although, in solving the equations, it will be easier to work directly with the
original field ¢.

We now choose, also in the Einstein frame, the cosmic-time gauge, according
to the rescaling

dp = == k($)dé , (4.10)

a= claewp, dftV: Cldtew/z,

p= c%ewﬁ, p= c%ewf)', o= C%ew&. (4.11)

From the (0,0) and (%,j) components of eq. (4.3) we obtain, respectively, the
Einstein cosmological equations (in units such that M2 = ¢IM? = (87G)~! =
2)
6H? = p+ py, (4.12)
AH + 6H? = —p — py, (4.13)

while from the dilaton equation (4.4) we get

B(9) (34 3HY) + @)K (@) ¢+ V'(9) + 5 (@)(p— 3p) +0] = 0. (4.14)

In the above equations H = a/a, a dot denotes differentiation with respect to
the Einstein cosmic time, and we have used the definitions:

. A~

po=RDF V@), po=ROF V). (@15)

The combination of equations (4.12)—(4.14) leads finally to the coupled conser-
vation equations for the matter and dilaton energy density, respectively:

p+BH(p+p) — 58 [ ()(p — 3p) +0] =0, (4.16)
pg +3H (py + py) + %dﬁ [+/(8)(p — 3p) + 0] =0. (4.17)

For further applications, and for a more transparent numerical integration,
it is also convenient to parametrize the time evolution of all variables in terms
of the logarithm of the scale factor, x = In(a/a;), where a; corresponds to the
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initial scale?, and to separate the radiation, baryonic and non-baryonic matter
components of the cosmological fluid by setting

p = pPr+pPotpd=prtPm,

1
P = 3pr (4.18)
O = 0, +0p+0g =0+ 0O,

The dilaton equation and the Einstein equation (4.12) can then be written,
respectively, as

2$ 1 de do\”
2 1.2 2 2 !
2HK T +k( m—l—3pr—|—V>—dX+2H kk (_dx

12V 4 4oy +0 =0, (4.19)

2
H? [6 _K (@> ] = pmt+p+V. (4.20)

The matter evolution equation (4.16) can be split into the various components
as

4 —— = 4.21
o T 0, (4.21)
dpy d¢
—_ — — = 0. 4.22
dx + 3pp (w P+ 0b) — ax 0 (4.22)
dpd d¢
i + 3pa (¢ pd+04) = Dy 0. (4.23)

Finally, eq. (4.19) is also equivalent to the dilaton conservation equation
(4.17), which becomes
dp - 1 do
—2 65 — 6V (@) + 5 (Wpm +0) =

= 0. 4.24
o 0 (424)

4.3 Attractors

4.3.1 Accelerated late-time attractors with constant €2

As a first step towards a “dilatonic” interpretation of quintessence we will now
discuss the possibility that the above equations, together with a string-theory
motivated potential and loop corrections, are asymptotically solved by an ac-
celerated expansion, a > 0, with frozen ratio p,,/pg4 of the order of unity. This
last property, in particular, is expected to solve (or at least alleviate) the cosmic
coincidence problem described in Section 4.1.

*The relation between x and the redshift z is x = —In(1 + 2) + In(ao/a;), where ag is the
present value of the scale factor.
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Under the basic assumption (2.31) the form factors appearing in (4.1) have
a finite limit as ¢ — +o0, and assuming the validity of an asymptotic Taylor
expansion, we write:

e*"/’(‘ﬁ) — C% +b167¢ + 0(672(15)
Z(¢) = —c5+be ?+0(e7*?) (4.25)
a(g) ! = oyl +be ?+0(e ),

where ¢?,c3 are assumed to be of the same order (typically 10?) and «q is to
be identified with the unified gauge coupling at the GUT scale, i.e. ap ~ 1/25.
Unlike the model discussed in [Boisseau et al., 2000] our model thus describes,
in the strong coupling limit ¢ — +o00, a minimally coupled, canonical scalar
field ¢ = V2(ca2/c1)¢, see eq. (4.10). In the opposite limit, ¢ — —oo, the gravi-
dilaton string effective action reduces, as usual, to an effective Brans—Dicke
model with parameter w = —1. We note that it is not hard to chose 9 (¢) and
Z(¢$) in such a way that the kinetic term of the dilaton keeps the correct sign
at all values of ¢ (see the example given in Sect. 4.4).

Similarly, the assumption that V originates from non-perturbative effects,
and that V — 0 as ¢ — oo, allows us to write, quite generically:

V(g) = Voe ®+ O(e ). (4.26)
Since the overall normalization of the potential Vj is non-perturbative, it should
be related to the asymptotic value of the gauge coupling oy by an expression
of the form:

(&%)

4
Vo = M2 exp (_ﬁ—> = M2, (4.27)

with some model-dependent (one-loop) S-function coefficient 8. For a compar-
ison with earlier studies of an exponential potential [Ferreira and Joyce, 1998],
[Amendola and Tocchini-Valentini, 2001] we also note that, when referred to
the canonically normalized dilaton field ¢ defined in (4.10), the Einstein frame
potential (4.26) asymptotically exibits an exponential behaviour

V ~ exp <—&> , (4.28)

with A = ¢1/co = V2/k at ¢ — +o0.

It is important to discuss the size of the potential needed for the viability of
our scenario. Since the acceleration of the Universe appears to be a relatively
recent phenomenon (even, possibly, an eztremely recent one, as recently argued
in [Turner and Riess, 2001]), the potential V' must enter the game very late, i.e.
at an energy scale of the order of p'/4 ~ 1073 eV. Unless we want to play with
an unnaturally large present value of ¢, this also fixes the scale of the potential
in (4.26) as Vp ~ (1073eV)%. As far as we know, this is feature is common to
all quintessence scenarios: the problem of an outstandingly small cosmological
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constant is traded for the introduction of another unnaturally small mass scale
M.,.

In our context, we easily find that, in order to have a properly normalized
potential, we need the constant § appearing in the exponent of (4.27) to be
somewhat smaller than the coefficient 83 of the QCD beta function (see also
the discussion after eq. (4.30)), say 8 ~ 0.6/33. Given our ignorance of the origin
of the dilaton potential, this looks perfectly acceptable, a priori. However, this
apparent resolution of the fine-tuning problem should not hide the fact that the
potential has to be adjusted very precisely if one wants to start the acceleration
of the Universe not earlier that at red-shift z ~ O(1), and not later than today.
To the best of our knowledge there is no obvious explanation, at present, of this
aspect of the coincidence problem.

Let us now come to the matter sector of the action (4.8). As a typical
example of I'y,, we take:

Tl gymatter) = [ d'av/=g N i@+ m(¢)] N
+%/d4a:\/—_g [eﬁ(d’)(auD)? —e"(¢)u2D2] (4.29)

the first term representing baryonic matter, the second (scalar) cold dark mat-
ter, while the gauge term appearing explicitly in (4.8) can already represent the
radiation component of the cosmic fluid.

In the spirit of the strong coupling scenario we assume that ordinary matter
and radiation have nearly metric couplings to g, i.e. that o4, 0, =~ 0 as
¢ — oo. The relation between dilatonic charges and the terms in the actions
(4.8), (4.29) are the ones discussed in Chapter 1 and 2 :

op 0 oy 0

o ~ 94 (In Agen) , o ~ Ry (In a). (4.30)
Given that Agcp ~ Msexp (—1/Psa) (with B3 the coefficient of the QCD f-
function), and using (4.25) for «, it is clear that both o}, and o, are exponentially
suppressed at large, positive ¢.

In the dark matter sector, on the contrary, we shall assume more generic
quantum corrections. By taking for instance the action in eq. (4.29), one has
for the dilatonic charge of dark matter:

oq = — ('(¢)e59(9, D) + 1/ (¢) ")y’ D2, (4.31)

Furthermore, the equations of motion for the D field give a relation between the
time-averaged quantities, e¢(?) (D?) = 2¢™®) (D?) (which is consistent with the
interpretation of D as non-relativistic matter, p; = 0, as assumed in the preced-
ing section), and relate o4 and pg by a (generally ¢-dependent) proportionality
factor

oa/pa = q(¢) = 7'(¢) —{'(9)- (4.32)

The late-time behaviour we will discuss takes place if we assume that, in the
strong coupling limit (i.e., ¢ > 1), ¢(¢) tends to a positive constant of order
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unity, and that the dark matter component dominates over baryonic matter
and radiation. Thus, the regime we are considering is characterized [according
to egs. (4.25), (4.26)] by

K (¢) = 2c5/c = 2/X%, o = oy,

4.33
p=pi @) = q = O),  oa=qpa. (4.33)

It follows that the dilaton coupling to the stress tensor can be asymptotically
neglected with respect to the coupling to the dilatonic charge, as 9’ ~ e ?/c? <
1. The dilaton and dark matter conservation equations (4.23), (4.24) and the
Einstein equations (4.12), (4.13) can then be written, asymptotically, in the
form

pd + 3Hpa — gpm¢3 =0,  py+6Hp + gpm¢3 =0, (4.34)
2H
1=Q4+ Q + Qy, 1+3F:QV_QIC1 (4.35)

where we have defined
pa = 6H*Qq, Py = Pk + pv,
pr = 6H?Qy, = ¢%/)2, py = 6H?*Qy = V. (4.36)

We now look for solutions with asymptotically frozen dark-matter over dark-
energy ratio, and frozen “equation of state”. From the constraint (4.35) this is
equivalent to the requirement that pg, py and py scale in the same way, i.e.

dlogpy _ dlogpg dlogpy _ dlogpa (4.37)
dx dx ' dx dx '
The first condition and the conservation equations give
do 6
— = —(Qy — Q). 4.38
T = o (439)

Expressing d¢/dy through Q = (d¢/dx)?/6A%, and inserting it in the second
condition (4.37), we obtain, respectively,

6 Qv — O

_ ]2y -0 g vk
>‘q (V k)a q 1+Qk_QV’

o (4.39)

where in the latter the asymptotic form of the potential (4.26) has been used.
The last two equations can be solved for € and Qy/,

6 q
Q= 57, Qv = U+ —— 4.40
SEPICENAE R (4.40)
giving easily
_ 12+4¢(g+2)N? B q(g +2)\?

(4.41)

T T (22N Y T T qg + 2N
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where the last equation for wy = (Q — Qv)/(Qx + Q) provides the dilaton’s
equation of state.

The above asymptotic solution, first obained by [Wetterich, 1995], and re-
cently studied by [Amendola, 2000, Holden and Wands, 2000], generalizes the
results discussed of [Ferreira and Joyce, 1998] to the interacting dark matter
case, and is very similar to the results obtained by including suitable non-
minimal couplings in a Brans—Dicke context [Amendola, Tocchini-Valentini,
2001], or by including an effective bulk viscosity in the dark matter stress tensor
by [Zimdahl and Pavén, 2001]. Our (4.34) corresponds indeed, in the notation
of [Zimdahl and Pavén, 2001], to a dissipative pressure I = —qpm(qi>/ 6H). See
also [Amendola, 2000, Holden and Wands, 2000] for a discussion of the param-
eter values compatible with such an asymptotic solution.

Once Qf and Qy are given, one can easily compute all the relevant kinematic
properties of the asymptotic solution as a function of only two parameters, ¢
and A = ¢1 /co, which are in principle calculable for a given string theory model.
The asymptotic value of the acceleration, in particular, is fixed by eq. (4.35) as

@ _ 4 2 _a!

— —_— 4.42
aH? H? g¢+2 (4.42)

One can also easily obtain, through a simple integration, the asymptotic evo-
lution of the Hubble factor and of the dominant energy density,

H ~ q=3/C+9) p~ a8/t (4.43)

In order to illustrate the range of parameters possibly compatible with
present phenomenology, we have plotted in the {\ ,¢} plane various curves
at Qp = Q +Qy = const, and wg = ( — Qy)/(Qg +Qy) = const. (Fig. 4.1).
Note that the case discussed by [Ferreira and Joyce, 1998] corresponds to stay-
ing on the X axis. In that case, the critical value of A below which Q4/94 — 0 is
V3. The addition of ¢ makes parameter space two-dimensional, with the point
A = /3 replaced by the left-most curve {13 = 1. Beyond that curve, i.e. for
A < 6/(2+ q) (as well as for all values of X if ¢ < —2), the ratio Q4/Q, goes
to zero. However, while in the case of [Ferreira and Joyce, 1998] acceleration
and a finite ratio Q4/Q4 are incompatible, this is perfectly possible in a large
region of the {\ ,q} plane.

In fact, it is possible to determine the region of our parameter space that
survives the various observational constraints (Type la supernovae, CMB an-
isotropies, large-scale structure ... ). The present values of €y and wg have
to lie in the range [Wang et al., 2000, Balbi et al., 2001] 0.6 < Q4 < 0.7, and
-1 <wg S —0.4, but the two allowed intervals are not uncorrelated. Assuming
that we are already in the asymptotic regime, the allowed region lies roughly
between the two curves 0y = 0.6 and €2y = 0.7 and above ¢ = 2. Other
phenomenological (but somewhat more model-dependent) constraints on ¢ and
A can be obtained from the recent measurements of the position of the third
anisotropy peak in the CMB distribution [de Bernardis et al., 2001], which con-
strains the value of Q4 today and at last scattering, as well as the time-averaged
equation of state (wy) [Doran, Lilley and Wetterich, 2002]. In the final part of
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Figure 4.1: The asymptotic configurations in the plane {)\ ,q}. The full bold
curves correspond to asymptotic solutions with fixed ratios py/p4 and with the
following values of {24: 1, 0.8, 0.7, 0.6, 0.5, 0.4 . On the right vertical axis we
have reported the corresponding g-dependent acceleration parameter, da/a?.
The thin dashed curves correspond to fixed asymptotic values of the dilatonic
equation of state wy = pg/pe, respectively —0.4, —0.7, —0.9 and —0.95.

this paper we shall present a model of dark matter that seems to be compatible
with all the above-mentioned constraints.

4.3.2 Before acceleration: focusing and dragging, an analytic
study

Having discussed, in the previous section, the late-time accelerated expansion
caused by the interplay of the dilaton potential and the dark-matter dilatonic
charge, it looks appropriate to illustrate the earlier evolution, i.e. before the
dilaton potential starts entering the game. In this section we shall provide
a semi-quantitative, analytic analysis of this behaviour as it follows from the
string cosmology equations (4.21)—(4.24), by imposing on the non-perturbative

normalization (4.27) the constraint Vol/ S Heq, where Hgq is the curvature
scale at the epoch of matter-radiation equality. In such a way the dilaton
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potential may eventually become important only at late times, in the matter-
dominated era. We will show that this early evolution can be roughly divided
in three epochs, providing, altogether, an intermediate attractor that nicely
connects to the accelerated behaviour described in Section 4.3.1.

Let us start by considering an initial, post-big bang and post-inflationary
regime of expansion driven by the standard radiation fluid, with negligible dila-
tonic charge, o, = 0. Possible non-relativistic matter, if present, is highly
subdominant with respect to the other components (p,, < pg, pr) and, conse-
quently, the dilatonic terms in eq. (4.24) can be neglected. The conservation
equations can be easily integrated to give

pr = prie” X, Py = pie °X. (4.44)

Therefore, the dilaton (kinetic) energy density, even if initially of the same
order as p,, is rapidly diluted like a %. The dilaton itself, starting from a value
¢; ~ O(1) typical of the moderately-strong coupling post-big bang epoch, tends
to settle down to a constant value that can be easily estimated as follows

k2, (dp\? K [(dp)\?
Pk = 7H (a) 12 (a) (or + pg) = pg- (4.45)
For pr; = pgyi we get
@ _ f (1+e2)72, (4.46)

dx

which, for k£ = const., leads to a solution with asymptotic value ¢ = ¢1, related
to the initial value ¢; = ¢(0) by the constant shift

\/_ 3 3
A¢ - ¢1 ¢z - (1 + \/_) k- \/562’ (4-4-7)
independently of ¢; and of the initial x (the last equality holds for ¢; large
enough to justify the asymptotic relation k = v/2/)).

Such an initial regime is effective until the dilaton kinetic energy becomes
of the same order as p,,. At that point, some oscillations are triggered by the
interference term of eq. (4.24), but the dilaton energy density keeps decreasing,
on the average, until it enters a “focusing” regime, during which it is diluted at
a much slower rate (like a=2), so as to converge, at equality, towards the larger
values of p,, and p,. Eventually, when dark non-relativistic matter becomes
the dominant source (pg 2 pr), the dilaton energy density tends to follow the
dark matter evolution, as if it were “dragged” by it.

Before turning to a quantitative analysis of these two regimes we note that
the time evolution of py, in the “tracking” quintessence, is determined by the
slope of the potential. In the present context, instead, the focusing and dragging
effects are not due to the potential, but they are controlled by the non-minimal
coupling induced by (¢’ + ¢) (thus implementing an attractor mechanism al-
ready proposed for a class of non-minimal scalar-tensor models of quintessence
[Damour and Nordtvedt, 1993], [Bartolo and Pietroni, 2000]). Thanks to the
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focusing effect, which seems to be typical of the string effective action (even if
similar, in a sense, to the “self-adjusting” solutions of general relativity with
exponential potential [Ferreira and Joyce, 1998]), the dilaton energy density at
the matter-radiation equality turns out to be fixed independently from its ini-
tial value, and only slightly dependent from the initial value of the dilaton,
¢;. For large enough values of g, however, even the dependence upon ¢; tends
to disappear, because the value of the dilaton itself gets focused, as will be
discussed in the next section.

For a quantitative analytical study of the “focusing” and “dragging” regimes,
we start from eqgs. (4.21)—(4.24). Lumping together baryonic and dark matter,
neglecting V', and assuming, according to (4.32), 0 = o, = q(¢) pm, those
equations can be easily recast in the form:

_1dp
127 +4= 4.4
g T 0, (4.48)
4 d

o g+ (3% V3elps/n)'?] =0, (4.49)

dﬁ V3 1/2 _
o 60g £ V3epm(ps/p) = =0, (4.50)

where we have introduced the important parameter:
P () + q(4)

e(p) = T RE) 4.51

and the sign ambiguity comes from solving eq. (4.45) for d¢/dx in terms of py.
The focusing solution is then characterized by the relation:
2 2
n°(¢) p
pp = LD, (452)
P
ie. Q4 = n?(¢)QZ, which holds under the assumption that both € and n
are slowly varying. Indeed, we can establish the connection between these two
quantities by inserting the ansatz (4.52) into (4.50). This gives:
€ _1dn _1dp _1dp
—6 — =2 — 2ot — pTt 4.53
ﬂan v il v (4.53)
where on the right—hand side the logarithmic derivative of (4.52) has been taken.
By using (4.49) one finally has

—dn . (4.54)

d
pfl—p$\/§e[n’1+29mn] = 2n ~
X dx

d

We can now discuss a few cases of interest. During the radiation-dominated

phase, and after the kinetic energy of the dilaton is quickly red-shifted away, we
can neglect the term with Q,, in eq. (4.54), we set dp/dx = —4p, and obtain:

V3e d¢  3pme N 3p2, €2
4 dx . 2kp PPT T16p

~

(4.55)
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We refer to this behaviour as “focusing” since it implies that p,, lies, modulo a
factor (16/3)e~2, at the geometric mean between p ~ p, and p,. Hence, as we
approach radiation-matter equality, py is effectively focused towards the same
common value of the other two components (see eq. (4.58) below). Note that,
for a positive €, this happens thanks to a negative d¢/dyx.

In the matter—-dominated regime it is no longer safe to neglect the term in
Qp, in eq. (4.54), unless € < 1. In that case, the solution is

n ~ V3e —p‘lﬁ 71, Qp ~ 36202 —p‘lﬁ - ) (4.56)
dx " dx
During matter domination, using dp/dx = —3p, one gets
€ do¢ 2¢ P €2
~ — — ~ —— ~ . 4.57
TV i kP27 s (4:57)

In other words, the focusing regime has been turned into a dragging one: the
dilaton energy is dragged along by the (dark) matter energy and keeps a (small)
constant ratio to it. Incidentally, at the epoch of exact matter-radiation equal-
ity, using dp/dx = —3.5p, we easily get (still at small ¢):

P - 362

PR (4.58)
eq

which is always smaller than 6% for € < 1.

In order to understand what happens at larger values of ¢ it is useful to
find the reason why, for small €, py/pm stays constant. This comes about
because the corrections to the a2 and a~% laws for p,, and P, due to the non-
vanishing e, push the two towards each other. It is easy to check that, precisely
if py/(Pm + pg) = €2/3, both energies scale like a3+ We note, incidentally,
that the above ratio of energies nicely fits with the value given in (4.57) when
e < 1. If e < 1, the decrease of py is still slower than the a~* of p,, which
justifies neglecting the latter. However, if € > 1, this is no longer the case and
we have a third kind of behaviour, which can be called “total dragging”. In
that case, as shown by a simple analysis, all three components of p scale like
radiation, with the following sharing of the “energy budget” (remember that
we are always at ) = 1):

Qn 1 -1
2 32’ e
In the next section we will see how numerical integration confirms in full detail
the analytic behaviour we have discussed. We end this Section by discussing
some constraints on our parameters.
As already mentioned, we assume the ordinary components of matter (ra-
diation and baryons) to have a nearly metric coupling to g,, (see discussion
after eq. (4.29)). To be more specific, let us define the ratios between dilatonic

charges and energy densities in a way similar to that used for cold dark matter
in eq. (4.32), i.e.

Q= (4.59)

a(¢) = or/pr, a(®) = ob/po- (4.60)
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Since it is precisely the ratio (¢’ + g,3)/k, which controls both the effective
coupling of the dilaton to ordinary macroscopic matter, as well as a possible
time-dependence of the fundamental constants, we shall assume that both g
and ¢, are at most of order v/, in agreement with the discussion after eq.
(4.30). We then find that there are neither appreciable violations of the equiv-
alence principle in the context of macroscopic gravitational interactions, nor
significant contributions to the time-variation of the fundamental constants,
both effects being controlled by ’/k for g, — 0. In the strong coupling
regime we have 9'/k ~ e ?/(cicy). For a non-negative ¢;, and 2, c2 of or-
der 102, there is no appreciable deviation from the standard cosmological sce-
nario down to the epoch of matter-radiation equality, so that one easily satis-
fies the early-Universe constraints on dark energy, as reported for instance in
[Bean, Hansen and Melchiorri, 2001].

The dilaton charge of dark matter is not restricted by the experimental tests
of long-range gravitational interactions: this is the reason why we can play
with it in order to produce an acceleration. Still, from the above discussion
on the early phases of the universe, it is clear that high values of the dark-
matter parameter e may result in dangerously high values for (24, and thus in
radical deviations from the standard cosmological scenario. Until radiation-
matter equality the situation is relatively harmless: we can easily estimate
the dilaton energy density at the equality and at the nucleosynthesis scale,
Hy ~ 1010Heq, using the fact that the dilaton, during the focusing regime, is not
significantly shifted away from the value ¢; + A¢, fixed by eq. (4.47). Because of
the focusing behaviour we find Q4 (nucl) ~ 107'% Q4(eq), and therefore the most
stringent bound comes at equality, where, thanks to (4.58), it is comfortably
satisfied for € < 1.

During the dragging phase, however, we must certainly impose € < 1, oth-
erwise, the phenomenon of “total dragging” takes place. This would represent
a dramatic deviation from the standard cosmological scenario, since all the
components pg, pr, pq4 (except baryonic matter) would redshift in the same way
(a~*) from equality until the potential starts to be felt. Even if ¢ < 1, but
not sufficiently small, the unusual scaling p,, a3 tends to change the
global temporal picture between now and the epoch of matter-radiation equal-
ity and, from egs. (4.57), values of Q4 ~ €2/3 (while in agreement with possible
constraints at last scattering [Bean, Hansen and Melchiorri, 2001]) can be dan-
gerously high. In our context, a bound Qg4(drag) < 0.1, i.e. €(drag) < 0.3,
appears to be necessary in order to agree with the observed CMB spectrum
and with the standard scenario of structure formation.

On the other hand, due to the smallness of 9’ ~ e~?/c? in the dragging
regime, an upper bound on ¢ effectively turns into a bound on the value of
q/k, i.e. on the dilatonic charge of the dark matter component. Recently,
the constraints on the structure formation in dilatonic quintessence model have
been investigated by [Amendola et al., 2002]. For a last accelerating period
starting out at redshift z ~ 1 they find a bound for the combination Ag:

A Q(¢drag) < 042, (461)

where we used the already mentioned asymptotic relation A = v/2/k. Tt is clear
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that a constant ¢ cannot satisfy the above bound and, at the same time, provide
the present acceleration of the Universe by means of the mechanism described
in Section 4.3.1 (see also Fig. 4.1), that requires g\ 2> 4.

A time- (or, better, ¢— ) dependent g, however, is allowed. For this reason
we have to consider cold dark matter models like the one of eq. (4.29), whose
dilatonic charge (4.32) switches on at large enough values of the dilaton. The
transition to large values of ¢ is rapidly activated as the potential comes into
play, py ~ ps. At that point, the dilaton energy density stops decreasing
and freezes at a constant value, necessarily crossing, at some later moment,
the matter energy density, py ~ pq. From then on, the dilaton starts rolling
towards +o0, triggering the effect of the dilatonic charge, which rapidly freezes
the ratio pg/pr, and (for suitable values of q) leads to the accelerated asymptotic
regime described by eqgs. (4.41)—(4.42). Explicit numerical examples of such a
behaviour will be discussed in Section 4.4.

For a realistic picture, in which the positive acceleration regime starts
around the present epoch (and not much earlier) and the standard scenario
of structure formation is implemented successfully, we have to require that the
contribution of the dilatonic charge (as well as the effect of the dilaton po-
tential) come into play only at a late enough epoch. The importance of this
constraint was already discussed in the context of other scalar-tensor models of
quintessence [Amendola and Tocchini-Valentini, 2001] where, for instance, the
non-minimal coupling of the scalar field to the trace of the dark matter stress
tensor was assumed to be ¢-dependent, to interpolate between a small and a
large mixing regime.

4.4 Numerical examples

Finally, after the analytic discussion of the previous section, it seems appropri-
ate to illustrate the “run-away” dilaton scenario with some numerical example,
both in order to confirm the validity of some approximations made in deriving
the analytic results, and in order to see how the various regimes we discussed
can be put together. To this aim, we shall numerically integrate eqs. (4.19)-
(4.23), using eq. (4.20) as a constraint on the set of initial data, and assuming
an explicit model for the dilatonic charges and the dilaton potential. Also,
following the “induced-gravity” ideas [Sakharov, 1968], we shall specialize the
loop form-factors according to eq. (4.25), using the “minimal” choice

e V(@) — o9 4 C% ’ Z(p) = e ¢ — c% . (4.62)

First of all, for a clear illustration of the “focusing” and “dragging” regimes,
let us put V=0, o, =0 = 03, and 04 = gpg, with ¢ = const. By choosing, in
particular, ¢ = 100, ¢ = 30, we have integrated eqs. (4.19)—(4.23) for three
different values of the charge, ¢ = 0, ¢ = 0.01, and g = 0.1, starting from the
initial scale H; = 100 Heq,

1/2
(&) - (@> ! - (@) —10 20 (4.63)
aeq HZ pTZ ’
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and using pg; = pri, $; = —2 as initial conditions. It should be noted that such
initial conditions are generic, in the sense that different initial values of ps and
¢ may change the fixed value reached by ¢ during the focusing phase, but do
not affect in a significant way the subsequent evolution, as will be discussed at
the end of this section.

The results of this first numerical integration are illustrated in Fig. 4.2. The
left panel clearly displays the initial regime of fast dilaton dilution (pg ~ a=%),
the subsequent focusing regime (ps ~ a™2, see eq. (4.55)) triggered (after some
oscillations) soon after py falls below pr,, and the final dragging regime (pg ~
Pm, see eq. (4.57)) in the epoch of matter domination (the epoch of matter-
radiation equality corresponds to x =~ 46). Note that the constant values of ¢
have been chosen small enough to avoid the phenomenon of “total dragging”,
see Section 4.3.2. Note also that, in this example, p,, always coincides with
pq- In the right panel the evolution of 24, obtained through the numerical
integration, is compared with the analytic estimates (4.55), (4.56), (4.57), for
the three different values of ¢. In all cases, {4 grows like a? during the focusing
regime (in the radiation era), while the final stabilization €, = const, after
the epoch of matter-radiation equality (x 2 46), clearly illustrates the effect
of the dragging phase during which pg and p;, evolve in time with the same
behaviour.

-20

-40

| 0g,0p

- 60

-80

-100
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Figure 4.2: Time evolution of py4 for ¢ = 0 (dash-dotted curve), ¢ = 0.01 (dashed
curve) and g = 0.1 (dotted curve). The initial scale is a; = 1072%ae,, and the
epoch of matter-radiation equality corresponds to x ~ 46. Left panel: the dila-
ton energy density is compared with the radiation (thin solid curve) and matter
(bold solid curve) energy density. Right panel: the dilaton energy density (in
critical units) is compared with the analytical estimates (4.55), (4.56), (4.57)
for the focusing and dragging phases.

For a realistic model of quintessence, however, a constant dilatonic charge
cannot drive the Universe towards an asymptotic accelerated regime and, si-
multaneously, satisfy all the required phenomenological constraints during the
earlier epochs (as discussed in the previous sections). By keeping oy, o, >~ 0 at
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large coupling (see eq. (4.30) and the discussion thereafter), we shall thus con-
sider the explicit model of scalar dark matter (4.29), with the following simple
loop form—factors

e 9 = 14 e10%/c2, "% = const (4.64)

(note that, by a field redefinition, one of the two loop factors can always be
taken to be trivial: what really matters is the ratio e¢/e"). Using (4.32) we
immediately get

o4 ed09

q(¢) = — =qo

—_— 4.
Pd c2 + e’ (4.65)

which is exponentially suppressed in the perturbative regime, and approaches
q = qo at large coupling (for gg > 1 it is thus compatible with an asymptotically
accelerated cosmological configuration, see Fig. 4.1). For our numerical exam-
ple we shall choose gy = 2.5 and ¢ = 150, but the behaviour of the solution
is rather stable, at late times, against large variations of the latter parameter
(see the discussion at the end of this section).

In addition, we have to specify the form of the dilaton potential. In agree-
ment with its non-perturbative origin, and with the assumtion of exponential
suppression at strong coupling (see Section 4.3.2), the simplest choice is a differ-
ence of terms of the type e #/*(#) We shall thus consider the bell-like potential
(in units M% = 2)

V($) = mi [exp (—e ?/B1) —exp(—e ?/Ba)| . 0<pBy<pB1, (4.66)

which leads, asymptotically, to the large-¢ behaviour of eq. (4.26). The mass
scale my, related to the mass M, of eq. (4.27), will be fixed at my = 1073 H,
together with 8, = 10,8 = 5, for a realistic scenario that starts accelerating
at a phenomenologically acceptable epoch.

With all the parameters fixed, we have numerically integrated the evolution
equations (4.19)-(4.23), for our model of charge (4.65) and potential (4.66),
using the same initial conditions as in the previous example, but separating the
dark and baryonic components inside p,,. In particular, we have set, initially,
pai = 10" pyi, py =7 x 1072y

The resulting late-time evolution of the various energy densities is shown in
the left panel of Fig. 4.3. Dark matter and baryonic energy densities evolve in
the same way, until the potential comes into play, starting at a scale around
X = 49. The potential first tends to stabilize pg to a constant but then (thanks
to the contribution of ¢) the system eventually evolves towards a final regime in
which pg and p, are closely tied up, and their asymptotic evolution departs from
the trajectory of the standard, decelerated scenario (in particular, they both
scale, asymptotically as a=%/(2%)  gee eq. (4.43). It is amusing to conjecture
that the different time-dependence of p, and r4 could be responsible for the
present small ratio py/pg-

In the right panel we have plotted the time evolution of the dilatonic
charge g, of the energy density (4, of the equation of state wg, and of the
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Figure 4.3: Left panel: Late-time evolution of the dark matter (solid curve),
barionic matter (dashed curve), radiation (dotted curve) and the dilaton (dash-
dotted curve) energy densities, for the string cosmology model specified by
egs. (4.65), (4.66). The upper horizontal axis gives the log;, of the redshift
parameter. Right panel: for the same model, the late-time evolution of ¢ (fine-
dashed curve), wy (dash-dotted curve), Qg (solid curve) and of the acceleration
parameter da/a? (dashed curve).

acceleration parameter i/aH?. When the potential energy becomes impor-
tant, all the above quantities rapidly approach their asymptotic values given
in egs. (4.41)-(4.42). Note that, with our choice of parameters, we have
go = 2.5 and A = c¢1/ca = 4/10/3, corresponding to an asymptotic value
Qy ~ 0.733, slightly exceeding the best fit value suggested by present observa-
tions [Wang et al., 2000, Balbi et al., 2001]. It is important to stress, however,
that the asymptotic attractor may be preceded by a (short) oscillating regime,
which, as illustrated in the right panel of Fig. 4.3, can easily allow for values of
the cosmological parameters different from the asymptotic ones to be compati-
ble with present observations. Note also that, when switching from the focusing
to the dragging phases, the dilaton starts to move back towards decreasing val-
ues of g, as will be illustrated also by a subsequent numerical integration. This
may slow down the evolution of ps with respect to py, during the dragging, as
shown for instance in the left panel of Fig. 4.3. Because of this effect, however,
the dilaton can easily satisfy, during the dragging phase, the phenomenological
bounds discussed in the previous sections. This does not require fine tuning,
the validity if the bounds being guaranteed for a large basin of initial conditions
by a convergent behaviour of the solutions during dragging.

During the focusing phase, in fact, the dilaton is practically frozen, as can
be argued from eq. (4.55), and its effective constant value, as determined
by eq. (4.47), depends on ¢;. However, if such a value is high enough, the
presence of the dilatonic charge may become important, and may contribute
to the focalization towards the epoch of matter-radiation equality, as already
anticipated. This is illustrated in Fig. 4.4, which shows the time evolution of the
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Figure 4.4: Time evolution of the dilaton field, for different initial conditions
¢; = —4,-2,0,2. All the other parameters are the same as in the example of
Fig. 4.3. After the plateau associated with the focusing regime, and for a strong
enough dilatonic charge, the solutions tend to converge to a common value of
¢. The subsequent running to +o0o, driven by the potential, is thus completely
independent from the initial value.

dilaton obtained by numerically integrating the same model as in Fig. 4.3, for
different initial values ¢; = —4, —2,0, 2. Although we start with different dilaton
values at the plateau associated with the focusing regime, all the solutions tend
to converge as we enter the dragging regime, so as to make the subsequent
(potential-dominated) evolution insensitive to the initial value of the dilaton®.

This new focusing effect, which is very different from the one of the en-
ergy densities during the radiation-dominated phase, can also be understood
analytically by writing the solution of eq. (4.57) as:

b k(F) -
X = Xeq = — / k9) 45, (4.67)

Since k is almost constant, a variation d¢eq on the initial value of ¢ changes the
solution ¢(x) by an amount d¢(x) = [e(¢)/€e(Peq)]dPeq, Which rapidly decreases
(with g(¢)) during the dragging phase. This is why the solution has become
independent of the initial value of ¢ by the time the potential becomes an

important component.

For the same reason, the model is only weakly affected by variations of the
parameter ¢ in eq. (4.65), which roughly gives the transition scale between
small and large dilatonic charges: ¢s = (2/qo)logc. Indeed, because of the

3The preceding evolution, of course, is not sensitive either, since during focusing the order
of magnitude of Qy is given by Q2, as in (4.55).
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Figure 4.5: Time evolution of ¢(¢), from eq. (4.65), for three different values
of the parameter c. All the other parameters are the same as in the example
of Fig. 4.3. During the dragging phase the value of q converges to the regime
gk 1.

above mechanism the dilaton is pushed back during the dragging phase the
dilaton is pushed back, with a velocity as high as needed to reach, in any case,
the safe zone ¢ <« 1. This effect is illustrated in Fig. 4.5, where we have plotted
the time evolution of g(¢), for the same model as Fig. 4.3, and for three different
values of c.

It should be noted, in conclusion, that the above class of models depends
in crucial way on three important parameters: my, go and the ratio A = ¢1/co.
The first one controls the transition time between the epoch of standard cos-
mological evolution and the final accelerated regime (as can be easily checked,
for instance, by repeating the numerical integration of Fig. 4.3 with different
values of my ). The other two parameters control the asymptotic properties of
the model (acceleration, equation of state, ... ), as discussed in Section 4.3.1.
Future precision data, both from supernovae observations and from measure-
ments of the CMB anisotropy, could give us a good determination of these
parameters, thus providing important indirect information on the parameters
of the string effective action in the strong coupling regime.

4.5 Conclusions

Let us conclude by summarizing the main points of this chapter. We have
argued that a run-away dilaton can provide an interesting model of quintessence
under a well-defined set of assumptions that we list hereafter:

e (strong coupling assumption: The limit of supertring theory, as its bare
four-dimensional effective coupling goes to infinity (so called induced
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gravity /gauge or compositeness limit), should exist and make sense phe-
nomenologically, i.e. should yield reasonable values for the unified gauge
coupling at the GUT scale and for the ratio Mp/Mgyr, thanks to the
large number of degrees of freedom at MgyT;

e In the visible-matter sector, the couplings to the dilaton, either direct or
through the trace of the energy-momentum tensor (i.e. via a conformally
rescaled metric), should vanish in the ¢ — +oo limit;

e In the dark matter sector, there should be a surviving coupling to the dila-
ton (and thus violations of the strong and/or weak equivalence principles)
even in the ¢ — 400 limit;

e The dilaton potential should be non-perturbative, go to zero asymptot-
ically, and have an absolute scale not too far from the present energy
density.

Under these circumstances, it is natural for the dilaton energy in critical
units, €y, to be: i) subdominant during radiation domination; ii) a (small)
fraction of the total energy at matter-radiation equality; iii) a (small) fraction
of Q,, during the earlier epoch of matter domination; iv) a fraction of dark-
matter energy since a red-shift O(1). This very last phase is characterized by
an accelerated expansion.

In other words, this framework seems to be naturally consistent with present
astrophysical observations and with known cosmological constraints. A more
accurate study of the constraints of this model has recently been done by
[Amendola et al., 2002], expecially in relation to the cosmological perturbations
and the formation of structure. Interesting enough, they find that structures
keep forming even during acceleration, thanks to the stronger gravitational at-
traction of dark matter. As a result, they do not find any contraddiction for an
accelerating phase starting as early as z ~ 5! If this were confirmed by further
studies — such as a precise computation of the CMB anisotropy spectrum in
this context — the model would gain even more interest.
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Appendix A

Conformal transformations

We show how various geometric and physical quantities transform under a con-
formal rescaling of the metric in D space-time dimensions. The quantities
relative to the conformally related frame will be denoted by a tilde. The con-
formal factor Q2 is a positive function of the spacetime coordinates, z#. The
conformally transformed metric is then

guu = QZQW/ (Al)
and the infinitesimal line element is scaled:
ds? = Q%ds?. (A.2)

Notice that the space-/time-like or null properties of vectors remain unaltered
and that, by going to the tilde frame, lengths get a factor 2 and masses a factor
Q~!. The determinant of the metric scales as

V=5 = 9P/ =g (A.3)

A.0.1 Intrinsic curvature

Geometric quantities can then be defined relative to the conformally rescaled
metric (A.1). The Christoffel connection for instance is

~ ]_~ - _ "
F,ﬁu = ig)m (gun,u + vk, — guu,n) (A4)
1
= FI)IV + ﬁ (gl)l\Q:U + gzi‘Q;N - guugAHQﬂ{') (A5)

The Riemann and Ricci tensors can similarly be defined, yielding a Ricci scalar
which can be given terms of the old metric as

53 - I/Q7 Q:”
R=0Q 2(R—Z(D—l)Dan—(D—2)(D—1)g“ #) (A.6)
The d’Alembertian operator itself transforms as

~ Q
O =02 (Da + (D — Q)QWF’MU"’) (A7)
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and we can write the original Ricci scalar in terms of the conformally trans-
formed metric:

R=0? (E +2(D - 1)0(nQ) — (D —2)(D — 1)@%}%) (A.8)



Appendix B

Induced gravitational coupling

In this appendix we calculate, with heat-kernel methods, the cosmological con-
stant and Ricci terms induced by N;/2 fermions ¢4 and Ny ¢ scalars minimally
coupled in D space-time dimensions. The emergence of a Ricci term and then
of “gravitation” as a quantum effect is at the basis of the “induced gravity
idea” [Sakharov, 1968]. Further references on the argument are [Adler, 1982],
[Amati and Veneziano, 1981], [Visser, 2002].

We consider a tree-level action of the form

S = Sgrav + S5 + S, (B.1)
where
1 D
Sgravlguw] = 5 22 d’z\/g R, (B.2)
No
Ssl b gu] = — 3 / dDmﬁZ(Vme%ber%Z), (B.3)
N1/2

Siltagul = = [ Pavg > Bap+ma) v (B.4)

Ko is the bare gravitational coupling which, in a string theory context, are
determined by the vacuum expectation value of the dilaton field.

In order to describe the effective dynamics of gravitational interactions we
want to integrate out the matter fields ¢4 and :

/D[guua¢ba¢d] Slguv: ¢, Val /iD[g,W Tlgun] . (B.5)

where
No . Ni/o )
ngav = —Sgrav + Zln [det(—-O + mg)} 24 Z In [det(—$2 + mi)} 2
b
1 No N1/2
—Sgrav — 5 zb:Trln(—D -+ mb Z ’I‘I'll'l wQ + md) (BG)
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The above formal expressions can be regularized by means of the Schwinger—De
Witt representation: if A is a self-adjoint operator then

Tr(nd) = — / T8 ey, (B.7)

S

as one can qualitatively check by watching at the functional dependence on the
h eigenvalue \; (Tr InA = 3", In),) of the terms above :

d [*ds o 1 d
- — Tr —sA = d sXi — — = —Tr(lnA). B.
) (e ) /€ se o0 N I (InA). (B.8)
Note that, if A = —0O+ m?, the cut-off s has dimensions [mass™?] and we can

make the identification 1/s ~ A2

With heat kernel techniques [Barvinsky and Vilkovisky, 1985] one can evalu-
ate the operators in the integral of equation (B.8) in the low energy limit (¢ — 0)
for scalar and fermions respectively [Frolov, Fursaev and Zelnikov, 1997] :

R
Tr(expsO) = o7 /dD:v\/_< D/2+31_D/2E+...>, (B.9)

1
)
O S R

The above expansion at lowest order in s gives the induced cosmological con-
stant term. Using (B.6) and (B.7) one has

Tr (exps ) =

Ni/2
%:2(4 1)D/2 Z/ dsesmbs 1-D/2 _ 42/ dsesmds 1-D/2
0 ™
1 [ N Nijo
= Samyph > mPT(-D/2, mie) — 4> mPT(-D/2, mie)| ,
b d
(B.11)
where the incomplete gamma function
o0
[(z,0) = / z* e %dx (B.12)
ag

has been used. Next order of the heat kernel expansion gives the contribution
to the gravitational constant:

Nyj2

1 1
o2 = 2% 47r TS(ADJ2 Z/ dse®™ s D/2 +2Z/ ds e*™ig D/
1 1 Nija
=52+ 2P Zme °T(1-D/2, mje) +2 Y _ m) *T(1 - D/2, me)
0 d

(B.13)
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The incomplete gamma function defined in (B.12) has the following “low en-
ergy” expansion:

r ~ = —— — B.14
(2,0~ 0) z+z+1 2(z+2)+ (B.14)

by which one can finally obtain the induced gravitational terms in powers of
the cut-off (remember ¢ ~ A72):

A 1 No (o,~D/2 2m%61—D/2 4”1/2 9¢-D/2 2m§61—D/2
%_W; D ' 2-D 42 p "TT2-D

d
1 Nij AD 2
= G (Ny — 4N1/2 Zmb 4 Z m} , (B.15)
and similarly,
N
1 1 1 AD 2 Yo i AD—4
32 252 G(4m)DP2 (No +2N112) 35 Zmb+2zmd D—4
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Appendix C

The stochastic evolution of
the dilaton

In this appendix we study the stochastic evolution of the dilaton ¢ during
inflation as described by the Langevin-type equation (3.26). We restrict our
attention to the region of phase space where the evolution of the inflaton x
is classical, and to a power-law potential of the form (3.14). It follows that
the inflaton evolves according to the classical slow-roll equation (3.17) whose
solution reads

X2 = Xi2n —np, (Cl)
where p, the parameter defined in (3.10), is shifted in such a way that py, = 0.
Equation (3.26) takes the form

dp 1 —ep
d_p - 2 b)\ce + f(p)a (C2)

where {(p) is a gaussian stochastic variable (GSV), with a “time-dependent”
r.m.s. amplitude H(p)/2m:

2
- (2n)?

[the relation with the normalized random white noise term of (3.26) is {(p) =
&2(p)H /27]. For any given source term &(p), the formal solution of (C.2) reads

<§(P1)f(p2)> 5(P1 —p2)a (0-3)

co(p) c@in Hen(p) brc® [? 1 ¢ [n(p)—n(p")] _ T e
e = et —— | dple ,  nlp) = 0@5@%

0
(C.4)

Note that the classical solution in (3.20), e¢?a(P) = e¢®in 4 (byc?/2) p , can be
easily recovered in the small noise limit {(p) — 0, n(p) — 0.

It proves convenient to compare the true solution to the classical one by
studying the statistical behaviour of the ratio A(p) = e¥?®) /ec¢aP). As we
will show below, (e¢"(P)) = O(1). Moreover, we are also assuming e®¥n = O(1)

103



104 APPENDIX C. THE STOCHASTIC EVOLUTION OF THE DILATON

or, at least, e¢¥in < (bxc?/2)p (see Section II for details) so that the leading
contribution to the first equation in (C.4) is given by the integral, and we have

Alp) = e°#) jecva®) o 11) /” dp'ecn®) ()] (C.5)
0

Since £(p) is a GSV, also its integral n(p) is a (centered) GSV. Moreover, if x
is a GSV with 02 = (z?) — (z)?2 = (2?), by Bloch’s theorem y = €” is a new
stochastic variable with (y) = (e%) = e{®)/2 and oy = e2(@”) — ¢{*) The
average value of A(p) thus reads

p !
(A(p)) ~ ]l) /0 dp! (/2 () -nG)P) (C.6)

The exponent on the right hand side of the above equation can be estimated by
using (C.3) and the slow-roll approximation H? ~ 2V (x, ¢)/3 = 2X(p)x™/3n ~

2X0X™/3n. One gets
(x(p') ) e <x(p) ) e
Xin Xin ’

(C.7)

' 1 P " n
(0) =m0 = s [ B =~ et

where i is the value at exit from self-regenerating inflation: H (xin)/2m =
n/(2xin) (see Section II for more details). Since we are interested in evaluating
(C.6) at the end of inflation, p = peng ~ X2/, we can thus write

(C.8)

’ :| (n+2)/2

, N n P
{[n(p) = (") = 2(n + 2) [1 Pend

When evaluated at p' = 0, the above formula gives (n(p)?) = n/(2(n + 2)).
Thus the normalization factor to the initial condition in (C.4) is of order one,

) i
as anticipated: (e¢"®)) = e2¢n(®)?) = O(1). From (C.6) and (C.8) we have:
1 Pend C2n
A(DPen ~ / dp’ ex (
(A(Pena)) vl AL e B sy -
! c*n
_ e (n+2)/2
/0 exp [4(n n 2):1: ] dz (C.9)

nb
with 0 < 8 < 1.

We can estimate the dispersion of the same quantity by expanding the
exponential inside the integral (C.6) in powers of £(p):

c [P P 1¢2 [P P 2
Ap) ~1+& / dp / e + 2 / dp ( / dp”s(p”))
P Jo P 2p Jo P!

(n+2)/ 2]

(C.10)
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At lowest order in £(p) the variance of the above quantity calculated at p = peng

reads
2 (o N L 2
T A(pena) <<1_7/0 dp /,, dp"&(p )) >
2 [P / P " P ///fI 2([)/")
= Z?/o dp/o dp /max(p',p")dp @n)? (C.11)
2 720 M
_ %/{;p dp[pl /plp dplI‘H(27£-Z;2).

As in equation (C.7) we can use the slow-roll approximation and obtain

2

1
c'n n
T h(pen) = n+z/0 2 (1-2)" e = Po(1).
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