Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Dynamical chaos as a tool for characterizing multi-planet systems

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


Many of the multi-planet systems discovered around other stars are maximally packed. This implies that simulations with masses or orbital parameters too far from the actual values will destabilize on short timescales; thus, long-term dynamics allows one to constrain the orbital architectures of many closely packed multi-planet systems. I will present a recent such application in the TRAPPIST-1 system, with 7 Earth-sized planets in the longest resonant chain discovered to date. In this case the complicated resonant phase space structure allows for strong constraints. A central challenge in such studies is the large computational cost of N-body simulations, which preclude a full survey of the high-dimensional parameter space of orbital architectures allowed by observations. I will discuss our recent successes in training machine learning models capable of predicting orbital stability a million times faster than N-body simulations, and the discovery space that this opens up for exoplanet characterization and planet formation studies.