This series consists of talks in areas where gravity is the main driver behind interesting or peculiar phenomena, from astrophysics to gravity in higher dimensions.
Merging compact objects encode a vast deal of information about their progenitor stellar systems, such as the types of galactic environments they were born in, the intricacies of stellar evolution the persisted throughout their lives, and the physics of the supernovae that marked their deaths. In this talk, I will highlight multiple open questions that can be illuminated through a combination of compact objects observations (via gravitational waves and/or electromagnetic radiation) and computational modeling of environments that lead to the formation of black holes and neutron stars.
With the detection of GW170817 we have observed the first multi messenger signal from two merging neutron stars. This signal carried a multitude of information about the underlying equation of state (EOS) of nuclear matter, which so far is not known for densities above nuclear saturation. In particular it is not known if exotic states or even a phase transition to quark matter can occur at densities so extreme that they can't be probed by any current experiment.
We present a plausible counterexample to the weak cosmic censorship conjecture in four-dimensional Einstein-Scalar theory with asymptotically flat boundary conditions. Our setup stems from the analysis of the massive Klein-Gordon equation on a fixed Kerr black hole background. In particular, we construct the quasinormal spectrum numerically, and analytically in the WKB approximation, then go on to compute its backreation on the Kerr geometry. In the regime of parameters where the analytic and numerical techniques overlap we find perfect agreement.
Simulations that numerically solve Einstein's equations are the only means to accurately predict the outcome of the merger of two black holes. The most important outputs from these simulations are the gravitational waveforms, and the mass and spin of the final black hole formed after the merger. The waveforms are used in extracting astrophysical information from detections, while the final mass and spin are used in testing general relativity. Unfortunately, these simulations are too expensive for direct use in data analysis; each simulation can take a month on a supercomputer.
Black holes in the background of the AdS soliton are, according to the gauge/gravity correspondence, dual to droplets of deconfined plasma surrounded by a confining vacuum. In this talk I will present, for the first time, the real time dynamics of finite energy black holes in these backgrounds. We consider horizonless initial data sourced by a massless scalar field. Upon time evolution, prompt scalar field collapse produces an excited black hole that eventually settles down to equilibrium at the bottom of the AdS soliton.
Advanced LIGO and Advanced Virgo are currently in the middle of their third observing run, and releasing open public event alerts for the first time. The LIGO-Virgo collaboration has issued 29 un-retracted candidate event alerts as of September 20th, 2019, potentially adding dozens more known compact binary object mergers to the eleven confident LIGO-Virgo detections from the first two Advanced-era observing runs. I’ll review novel LIGO-Virgo results to date, and discuss the challenges of extracting interesting new physics from noisy detector data.
The event horizon and the Cauchy horizon of an extremal black hole admit conserved charges associated with scalar perturbations. We will see that these charges are externally measurable from null infinity. This suggests that these charges have the potential to serve as an observational signature for extremal black holes. The proof of this result is based on obtaining precise late-time asymptotics for the radiation field of outgoing perturbations.
I shall analyze three specific general-relativistic problems in which gravitomagnetism plays important role: the dragging of magnetic fields around rotating black holes, dragging inside a collapsing slowly rotating spherical shell of dust, compared with the dragging by rotating gravitational waves (CQG 34, 205006 (2017), Phys. Rev. D 85 124003, (2012) etc). I shall also briefly show how "instantaneous Machian gauges“ can be useful in the cosmological perturbation theory (Phys. Rev. D 76, 063501 (2007)).
Following the advent of LIGO measurements, it has been recently observed that QFT amplitudes can be used to derive observables appearing in the scattering of two black holes, to very high orders in perturbation theory. Such framework easily fits into the Post-Newtonian and Post-Minkowskian expansions appearing in the treatment of the binary inspiral. In this talk we will review recent progress in this direction for the case of spinning black holes, focusing on radiation and the multipole expansion. From the QFT point of view these are in close relation to long-studied Soft Theorems.