Turning pictures into calculations: the duotensor framework

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


A picture can be used to represent an experiment. In this talk we will consider such pictures and show how to turn them into pictures representing calculations (in the style of Penrose's diagrammatic tensor notation). In particular, we will consider circuits described probabilistically. A circuit represents an experiment where we act on various systems with boxes, these boxes being connected by the passage of systems between them. We will make two assumptions concerning such circuits. These two assumptions allow us to set up the duotensor framework (a duotensor is like a tensor except that each position is associated with two possible bases). We will see that quantum theory can be formulated in this framework. Each of the usual objects of
quantum theory (states, measurements, transformations) are special cases of duotensors. The framework is motivated by the objective of providing a formulation of quantum theory which is local in the sense that, in doing a calculation pertaining to a particular region of spacetime, we need only use mathematical objects that pertain to this same region. This is, I argue, a prerequisite in a theory of quantum gravity.
Reference for this talk: http://arxiv.org/abs/1005.5164