- Home »
- Tsirelson's problem and linear system games

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

16100034

In quantum information, we frequently consider (for instance, whenever we talk about entanglement) a composite system consisting of two separated subsystems. A standard axiom of quantum mechanics states that a composite system can be modeled as the tensor product of the two subsystems. However, there is another less restrictive way to model a composite system, which is used in quantum field theory: we can require only that the algebras of observables for each subsystem commute within some larger subalgebra. For finite-dimensional systems, these two axioms are equivalent, but this is not necessarily true for infinite-dimensional systems. Tsirelson's question (which comes in several variants) asks whether the correlations arising from commuting-operator models can always be represented by tensor-product models. I will give examples of linear system non-local games which cannot be played perfectly with tensor-product strategies, but can be played perfectly with commuting-operator strategies, resolving (one version of) Tsirelson's question in the negative. From these examples, we can also derive other consequences for the theory of non-local games, such as the undecidability of determining whether a non-local game has a perfect quantum strategy.

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics