Transport bounds: from resistor networks to quantum chaos



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
17090049

Abstract

The Kovtun-Son-Starinets conjecture that the ratio of the viscosity to the entropy density was bounded from below by fundamental constants has inspired over a decade of conjectures about fundamental bounds on the hydrodynamic and transport coefficients of strongly interacting quantum systems.  I will present two complementary and (relatively) rigorous approaches to proving bounds on the transport coefficients of strongly interacting systems.   Firstly, I will discuss lower bounds on the conductivities (and thus, diffusion constants) of inhomogeneous fluids, based around the principle that transport minimizes the production of entropy.   I will show explicitly how to use this principle in classical theories, and in theories with a holographic dual. Secondly, I will derive lower bounds on sound velocities and diffusion constants arising from the consistency of hydrodynamics with quantum decoherence and chaos, in large N theories.   I will discuss the possible tension of such bounds with (some) holographic theories, and discuss resolutions to some existing puzzles.