Tensor Network Algorithms for 2D Strongly Correlated Systems



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Collection/Series: 
PIRSA Number: 
16120022

Abstract

In this talk I will give a short introduction into Projected Entangled-Pair States (PEPS), and their infinite variant iPEPS, a class of tensor network Ansatz targeted at the simulation of 2D strongly correlated systems. I will present work on two recent

projects: the first will be an application of the iPEPS algorithm to a Kitaev-Heisenberg model, a model which through-out recent years has received a lot of attention due to its potential connection to the physics of a subclass of the so-called Iridate compounds. The second will be work related to the development of the iPEPS method to specifically target cylindrical geometries. Here I will present some preliminary results where we apply the methods to the Heisenberg and Fermi-Hubbard models and evaluate their performance in comparison to infinite Matrix Product States. As a final part of my talk I will, depending on time, elaborate somewhat on potential future topics including (but not restricted to):  the main challenges of iPEPS simulations from a numerical perspective and what pre-steps we have experimented with to tackle these, the possibility of applying recent proposals for finite-temperature calculations within the PEPS framework to frustrated spin systems and the use of Tensor Network Renormalization for the study of RG flows.