- Home »
- Symmetry, Self-Duality and the Jordan Structure of Quantum Theory

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

11050037

This talk reviews recent and on-going work, much of it joint with Howard Barnum, on the origins of the Jordan-algebraic structure of finite-dimensional quantum theory. I begin by describing a simple recipe for constructing highly symmetrical probabilistic models, and discuss the ordered linear spaces generated by such models. I then consider the situation of a probabilistic theory consisting of a symmetric monoidal *-category of finite-dimensional such models: in this context, the state and effect cones are self-dual. Subject to a further ``steering" axiom, they are also homogenous, and hence, by the Koecher-Vinberg Theorem, representable as the cones of formally real Jordan algebras. Finally, if the theory contains a single system with the structure of a qubit, then (by a result of H. Hanche-Olsen), each model in the category is the self-adjoint part of a C*-algebra.

©2012 Perimeter Institute for Theoretical Physics