The sum-over-paths technique for Clifford circuits



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
17100062

Abstract

The path integral formulation of quantum mechanics has been immensely influential, particularly in high energy physics. However, its applications to quantum circuits has so far been more limited. In this talk I will discuss the sum-over-paths approach to computing transition amplitudes in Clifford circuits. In such a formulation, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action which is provided by the discrete Wigner representation. As an application of the sum-over-paths technique I will show how to recover a version of the Gottesman-Knill theorem, namely that the transition amplitudes in Clifford circuits can be computed efficiently.