Quantum algorithms for the Petz recovery channel, pretty-good measurements and polar decomposition



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
PIRSA Number: 
20100030

Abstract

The Petz recovery channel plays an important role in quantum information science as an operation that approximately reverses the effect of a quantum channel. The pretty good measurement is a special case of the Petz recovery channel, and it allows for near-optimal state discrimination. A hurdle to the experimental realization of these vaunted theoretical tools is the lack of a systematic and efficient method to implement them. We rectify this lack using the recently developed tools of quantum singular value transformation and oblivious amplitude amplification, providing a quantum algorithm to implement the Petz recovery channel. Our quantum algorithm also provides a procedure to perform pretty good measurements when given multiple copies of the states that one is trying to distinguish.

Using the same toolbox, we also develop a quantum algorithm for enacting the polar decomposition, a workhorse in linear algebra. This provides an alternative route to implementing a pretty-good measurements for the special case of pure states, which speeds up the general-purpose algorithm developed above.