Phiala Shanahan: MIT



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
18110071

Abstract

More than 99% of the visible matter in the universe is built from protons and neutrons and the nuclei that they form. This rich structure emerges dynamically from the complex interactions of quarks and gluons, the most elementary particles that have been discovered. Understanding how nuclear physics arises from the underlying quark and gluon dynamics is a computational challenge that pushes the capabilities of the world’s largest supercomputers.

In her lecture, Dr. Shanahan will introduce the audience to the subatomic realm and describe what supercomputer calculations of quarks and gluons can reveal about the origins of mass, the primordial nuclear reactions that power the sun, and the nature of the elusive dark matter that permeates the universe.