New Paths to Unconventional Topological Superconductivity



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
Subjects: 
PIRSA Number: 
11110078

Abstract

We report on our recent progress to investigate materials classes exhibiting d+id superconductivity, where topologically nontrivial pairing phases can emerge. Specifically, motivated by recent experimental progress, we show that graphene doped to the van Hove regime can give rise to a plethora of interesting ordering instabilities such as spin density wave and superconductivity. As a function of system parameters such as doping and range of Coulomb interaction, we explain which instability is favored by the system, and analyze the effect of long-range interactions on superconductivity giving rise to a competition between singlet d+id and triplet f wave. We also outline our work in progress for other materials classes which we believe are promising to stabilize such interesting topological superconducting states of matter.