On the mathematics of étale gerbes inspired by physics



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
16100049

Abstract

For a finite group G, a G-gerbe over a space B can be thought of as a fiber bundle over B with fibers the classifying orbifold BG. Hellerman-Henriques-Pantev-Sharpe studied conformal field theories on G-gerbes. Given a G-gerbe Y-> B, they constructed a disconnected space \widehat{Y} endowed with a locally constant U(1) 2-cocycle c. They conjectured that a CFT on Y is equivalent to a CFT on \widehat{Y} twisted by the "B-field" c. In this talk, I plan to explain the constructions in this conjecture and the mathematical side of the story, in particular the viewpoints from noncommutative geometry and Gromov-Witten theory. This is based on joint work with Xiang Tang.