Hydrodynamics and (Pre)Thermalization in Floquet Systems



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
19100092

Abstract

A tremendous amount of recent attention has focused on characterizing the dynamical properties of periodically driven many-body systems. Here, we use a novel numerical tool termed ‘density matrix truncation’ (DMT) to investigate the long-time dynamics of large-scale Floquet systems. By implementing a spatially inhomogeneous drive to a 1D quantum chain, we demonstrate that an interplay between Floquet heating and diffusive transport is crucial to understanding the system’s dynamics. We find that DMT accurately captures two essential pieces of Floquet physics, namely prethermalization and late-time heating to infinite temperature. Moreover, we show that these two aspects are driven by different microscopic mechanisms.