How to kick black holes out of their galaxies



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
18090033

Abstract

Black-hole recoils are arguably the strong-gravity phenomena with the most striking astrophysical consequences. In the late inspiral and final coalescence of black-hole binaries, anisotropic emission of gravitational waves causes significant linear momentum loss. The remnant black hole, therefore, recoils in the opposite direction. These final kicks can reach magnitudes up to 5000 km/s (“superkicks”), larger than the escape speed of even the most massive galaxies, thus opening the possibility of black hole ejections. In this talk, I summarize recent advances in modeling black-hole recoils and their astrophysical environments. I will address the relevance of disk-assisted spin alignment, new approaches to model black-hole recoils with waveform approximants, and prospects to directly detect superkicks with gravitational-wave detectors.