Complex Lines

Recording Details

Speaker(s): 
Scientific Areas: 
PIRSA Number: 
08040071

Abstract

Certain structures arising in Physics (mub\'s and sic-povm\'s) can be viewed as sets of lines in complex space that are as large as possible, given some simple constraints on the angles between distinct lines. The analogous problems in real space have long been of interest in Combinatorics, because of their relation to classical combinatorial structures. In the complex case there seems no reason for any combinatorial connection to exist. will discuss some of the history of the real problems, and describe some recent work that relates the complex problems to some very interesting classes of graphs.