Canonical tensor models with local time



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
Subjects: 
PIRSA Number: 
12110065

Abstract

Tensor models are
generalization of matrix models, and are studied as discrete models for quantum gravity for more than two-dimensions. Among them, the rank-three tensor models can be interpreted as theories of dynamical fuzzy spaces, and they generally have the feature of

respecting symmetries. In this talk, after briefly reviewing some results on Euclidean models such as spontaneous generation of fuzzy spaces and Euclidean general relativity respecting the diffeomorphism symmetry on them, I will present a way to introduce “local” time to the rank-three tensor models by constructing “local” Hamiltonians. The consistency among the multiple ways of local time evolutions is guaranteed by the on-shell closure of the constraint algebra among the

local Hamiltonians and the symmetry generators of the tensor models. The constraint algebra is shown to approach the DeWitt algebra in a formal continuum limit. I will also discuss the two-fold uniqueness of the local Hamiltonians, and will briefly show some preliminary results on the quantization.