Born--Oppenheimer approximation for quantum fields on quantum spacetimes



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
09110142

Abstract

The relation between loop quantum gravity (LQG) and ordinary quantum field theory (QFT) on a fixed background spacetime still bears many obstacles. When looking at LQG and ordinary QFT from a mathematical perspective it turns out that the two frameworks are rather different: Although LQG is a true continuum theory its Hilbert space is defined in terms of certain embedded graphs which are labeled by irreducible representations of SU(2). The natural arena for ordinary QFT, on the other hand, is a Fock space which strongly uses the metric properties of the underlying continuum spacetime. In this talk I will review this issue and show how one can use Born--Oppenheimer methods to further progress towards an understanding of (matter) quantum field theories from first principles.