Black hole information loss and discreteness of quantum geometry

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


In an approach to quantum gravity where space-time arises from coarse graining of fundamentally discrete structures, black hole formation and subsequent evaporation could be described by a unitary evolution without the problems encountered by standard remnant scenarios or the schemes where information is assumed to come out with the radiation while semiclassical evaporation (firewalls and complementarity). I point out the possibility that the final state is purified by correlations with the fundamental pre-geometric structures (in the sense of Wheeler) which are available in such approaches, and, like defects in the underlying space-time weave, can carry zero energy.