Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Entropy is an important information measure. A complete understanding of entropy flow will have applications in quantum thermodynamics and beyond; for example it may help to identify the sources of fidelity loss in quantum communications and methods to prevent or control them. Being nonlinear in density matrix, its evaluation for quantum systems requires simultaneous evolution of more-than-one density matrix.
It has long been believed that Stradivari and his contemporaries in 18^{th} Century Italy built violins with playing qualities unmatched by later makers. However, a team of researchers led by Claudia Fritz and Joseph Curtin have shown that under double-blind conditions neither professional violinists nor experienced listeners can tell Old Italian violins from new ones at better than chance levels. Moreover, players and listeners tend to prefer the new.
The quest for quantum spin liquids is an important enterprise in strongly correlated physics, yet candidate materials are still few and far between. Meanwhile, the classical front has had far more success, epitomized by the exceptional agreement between theory and experiment for a class of materials called spin ices. It is therefore natural to introduce quantum fluctuations into this well-established classical spin liquid model, in the hopes of obtaining a fully quantum spin liquid state.
The subject of quantum field theory in mixed states of quantum matter is an old and rich one. The natural setting to discuss field theory in a mixed state is the Schwinger-Keldysh formalism. The subject of this talk is the set of peculiar symmetries that arise in Schwinger-Keldysh theories, and how they may be accounted for in effective field theory. In particular, when the mixed state is thermal, the effective description is constrained by two BRST-like supercharges which, at low energies, generate an algebra akin to minimal supersymmetric quantum mechanics.
I will describe the Dark Energy Spectroscopic Instrument (DESI), an instrument currently being built to carry out a large galaxy redshift survey. DESI is the next step beyond the SDSS and BOSS surveys, mapping over 30 million galaxies. I will focus in particular on the amazing engineering challenges of the DESI instrument itself, which includes a 5,000-robot army and 250 kilometers of fiber optics. I will conclude by briefly describing the work I am personally involved in: a large imaging survey that will measure the galaxies from which DESI will select targets for