Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Tuesday Oct 25, 2016
Speaker(s): 

We consider conformal blocks of two heavy operators and an arbitrary number of light operators in a 1+1 dimensional CFT with large central charge. Using the monodromy method, these higher-point conformal blocks are shown to factorize into products of 4-point conformal blocks in the heavy-light limit for a class of OPE channels. This result is reproduced by considering suitable worldline configurations in the bulk conical defect geometry. We apply the CFT results to calculate the entanglement entropy of an arbitrary number of disjoint intervals for heavy states.

Collection/Series: 
Scientific Areas: 

 

Tuesday Oct 25, 2016
Speaker(s): 

We describe a new solution to the strong CP problem inspired by the massless up quark solution. At high energies, QCD is embedded in a SU(3)xSU(3)xSU(3) model, with each matter generation charged under a different site. Instanton effects are unsuppressed at the scale of Higgsing to the SM diagonal QCD, and a set of anomalous U(1)_PQ symmetries removes the low-energy strong CP phase. A non-zero theta parameter is generated at loop level near current bounds. Similar models can also lead to a heavy axion solution to the strong CP problem.

Collection/Series: 
Scientific Areas: 

 

Tuesday Oct 25, 2016
Speaker(s): 

If heavy fields are present during inflation, they can leave an imprint in late-time cosmological observables. The main signature of these fields is a small amount of distinctly shaped non-Gaussianity, which if detected, would provide a wealth of information about the particle spectrum of the inflationary Universe. Here we investigate to what extent these signatures can be detected or constrained using futuristic 21-cm surveys. This part of my talk is based on 1610.06559.

Collection/Series: 
Scientific Areas: 

 

Thursday Oct 20, 2016
Speaker(s): 

Einstein's causality is one of the fundamental principles underlying modern physical theories. Whereas it is readily implemented in classical physics founded on Lorentzian geometry, its status in quantum theory has long been controversial. It is usually believed that the quantum nature of spacetime at small scales induces the breakdown of causality, although there is no empirical evidence that would support such a view.

Collection/Series: 
Scientific Areas: 

Pages