Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The Hartle-Hawking (HH) no-boundary proposal provides a Euclidean path integral prescription for a measure on the space of all possible initial conditions. Apart from saddle point and minisuper-space calculations, it is hard to obtain results using the unregulated path integral. A promising choice of spacetime regularisation comes from the causal set (CST) approach to quantum gravity. Using analytic results as well as Markov Chain Monte Carlo and numerical integration methods we obtain the HH wave function in a theory of non-perturbative 2d CST.
I'll discuss the two topological twists of 3d N=4 theories, and explain how to understand them in the AKSZ/BV formalism, and how they relate to twists of 4d N =2 theories. Symplectic duality then takes the form of an equivalence between 3d N=4 theories which interchanges the two topological twists. I'll also introduce monopole operators and explain the role they play in symplectic duality.
In this talk I will describe numerical constructions of gravitational
duals of theories deformed by localized Dirac delta sources for scalar
operators. We perform two different constructions, one at zero and
the other at nonzero temperature. Surprisingly we find that imposing the preservation of scale
invariance at zero temperature requires the bulk scalar self-interaction potential to be
the one found in a certain Kaluza-Klein compactification of 11D supergravity.
Topological aspects of physical systems, including the called topological states of matter, have become hot topics in the frontiers of physics in recent years. Here I would like to present a mathematically "popular" talk for professional physicists for a highlight or overview of how one can systematize knowledge of topological aspects of quantum field theories. Our starting points are Descent Equations and Gauge Structure in Configuration Space in Field Theory. (The audience needs only to know the meaning of "differential forms".)