Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
A class of operations distinct to entangled states shared between more than two parties is their conversion to entangled states shared between fewer parties. The extent to which these can be achieved in the regime of local operations and classical communication provides an operational characterisation of multiparty states, for example in the \"entanglement of assistance\" and related quantities. I will give a brief overview of this topic and discuss our results showing qualitatively different behaviour when the parties receiving the final state are not chosen beforehand.
Several finite dimensional quasi-probability representations of quantum states have been proposed to study various problems in quantum information theory and quantum foundations. These representations are often defined only on restricted dimensions and their physical significance in contexts such as drawing quantum-classical comparisons is limited by the non-uniqueness of the particular representation.
We have two strong reasons to argue that Einstein\'s theory of general relativity may be incomplete. First, given that it cannot be expressed within a consistent quantum field theory there is reason to expect higher energy corrections. Second, the observation that we are undergoing a current epoch of accelerated expansion might indicate that our understanding of gravity breaks down at the largest scales.
We describe simple systems where stringy instantons induce dynamical supersymmetry breaking, without any non-Abelian gauge dynamics. In suitable cases, a dual description via geometric transitions allows one to recast the instanton-generated superpotential as a classical flux superpotential. These simple DSB systems may have applications in model building.
There is a deep relation between Loop Quantum Gravity and notions from category theory, which have been pointed out by many researchers, such as Baez or Velhinho. Concepts like holonomies, connections and gauge transformations can be naturally formulated in that language. In this formulation, the (spatial) diffeomorphisms appear as the path grouopid automorphisms. We investigate the effect of extending the diffeomorphisms to all such automorphisms, which can be viewed as \"distributional diffeomorphisms\".
Check back for details on the next lecture in Perimeter's Public Lectures Series