Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Wednesday Feb 08, 2006
Speaker(s): 

This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.

Basic texts:

-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain

Prerequisites:

 

Wednesday Feb 08, 2006
Speaker(s): 

This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.

Basic texts:

-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain

Prerequisites:

 

Wednesday Feb 08, 2006

Asymptotic statements like the almost-equi-partition law, the theorm of Shannon Mc -Millan-Breiman, the theorem of Sanov have all natural quantum analogs. They all talk about the thermodynamik limit of quantum spin systems. I will try to summarize these results and sketch the main ideas of proof.

Scientific Areas: 

 

Wednesday Feb 08, 2006
Speaker(s): 

I look at the information-processing involved in a quantum computation, in terms of the difference between the Boolean logic underlying a classical computation and the non-Boolean logic represented by the projective geometry of Hilbert space, in which the subspace structure of Hilbert space replaces the set-theoretic structure of classical logic. I show that the original Deutsch XOR algorithm, Simon's algorithm, and Shor's algorithm all involve a similar geometric formulation.

Collection/Series: 

Pages