Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The laws of physics are usually meant to be set in stone; variability is not usually part of physics. Yet contradicting Einstein\'s tenet of the constancy of the speed of light raises nothing less than that possibility. I will discuss some of the more dramatic implications of a varying speed of light. João Magueijo is Professor of Physics at Imperial College London. He is currently visiting Perimeter Institute and the Canadian Institute for Theoretical Astrophysics in Toronto.
The best studied class of dark matter candidates in Supersymmetric theories is the WIMP, Weakly Interacting Massive Particles, which makes cold dark matter. There is a well-motivated alternative to the WIMP -- dark matter populated by decays of WIMPs. This dark matter from decays is closer in spirit to warm dark matter. They can be distinguished from cold dark matter by observations of structure on scales smaller than about a megaparsec, where cold dark matter models seem to face difficulty. Big Bang Nucleosynthesis predictions are also modified in interesting ways.
The modern view of representing a quantum observable as a semispectral measure as opposed to the traditional approach of using only spectral measures has added a great deal to our understanding of the mathematical structures and conceptual foundations of quantum mechanics.
At low energy and small curvature, general relativity has the form of an effective field theory. I will describe the structure of the effective field theory, and show how it can be used to calculate low energy quantum effects.
Geometric flows, especially the Ricci flow, have been used with considerable success in recent years to address the Poincare and Thurston conjectures for 3-manifolds. In this talk, I will briefly introduce these geometric flows, and describe how they appear in a completely different context in the physics of string theory. I will then outline how recently developed techniques in geometric flows could be used to address questions of importance in string theory.
Experiments have ruled out unit-strength scalar-mediated fifth forces on scales ranging from 0.1 mm to 10,000 AU. However, allowing the scalar to have a quartic self-interaction weakens these constraints considerably. This weakening is due to the "chameleon mechanism", which gives the scalar field an effective mass that depends on the local matter density. I will describe the chameleon mechanism and discuss experimental constraints on self-interacting scalar fields.