Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
A theory governing the metric and matter fields in spacetime is {\it
Abner Shimony is well-known for, among other contributions, his seminal work on Bell inequalities, turning a philosophical question into an experimental one. In my presentation I like to remind us how this experimental field is nowadays feeding into applied science. This is happening both in terms of the involved technologies and in the conceptual tools.
I will report my efforts to describe elementary Quantum behaviours, specifically single-particle interference and two-particle entanglement, in an accelerating frame.
Entanglement swapping is such a powerful technique for dealing with EPR problems, that it can handle inefficient counters and Bell Theorems without inequalities, even for two particles. We will examine some of the results and pitfalls.
An experimental realization of our spin-1/2 particle version of the Einstein-Podolsky-Rosen (EPR) experiment will be briefly reviewed. In the proposed experiment, two 199Hg atoms in the ground 1S0 electronic state, each with nuclear spin I=1/2, are generated in an entangled state with total nuclear spin zero. Such a state can be obtained by dissociation of a 199Hg2 molecule (dimer) using a spectroscopically selective stimulated Raman process.
Feynman was probably correct to say that the only mystery of quantum mechanics is the principle of superposition. Although we may never know which slit a photon has been passing in a Youngs double-slit experiment, we do have a corresponding classical concept in classical electromagnetic theory: the superposition of electromagnetic fields at a local space-time point is a solution of the Maxwell equations.
According to a widely accepted view, the emergence of macroscopic behavior is related to the loss of quantum mechanical coherence. Opinions on the possible cause of this loss diverge. In the present talk it will be shown how a small, assessable amount of indeterminacy in the structure of space-time may lead to the emergence of macroscopic behavior, in agreement with empirical evidence.