Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
A personal reflection on why Prof. Smolin became a scientist, and what life as a scientist is like, followed by an introduction to the mystery of dark matter.
How should we think about quantum computing? The usual answer to this question is based on ideas inspired by computer science, such as qubits, quantum gates, and quantum circuits. In this talk I will explain an alternate geometric approach to quantum computation. In the geometric approach, an optimal quantum computation corresponds to "free falling" along the minimal geodesics of a certain Riemannian manifold.
The anatomy of a black hole.
Learning Outcomes:
• What are the mass requirements for a star to become a black hole?
• The anatomy of a Schwarzschild black hole, including the singularity and the event horizon.
• What a traveller would experience if he orbited a black hole, or had the bad luck to fall through the event horizon.
The physical attributes of a black hole and what types of physical evidence astronomers use the locate them.
Learning Outcomes:
• What are the physical requirements for a star to become a black hole, and what properties of that star remain after the black hole is formed?
• The types of black holes, including: the Schwarzschild black hole, the Reissner-Nordström black hole, the Kerr black hole, and the Kerr-Newman black hole.
• What a traveller would experience if he orbited one of these more general black holes, or fell through to the singularity.
An introduction to a few of the major scientists who applied Einstein's ideas to better understand the life cycle of various stars.
Learning Outcomes:
• How Subrahmanyan Chandrasekhar resolved the paradox of the white dwarf star, and how Walter Baade and Fritz Zwicky described the dynamics of neutron stars.
• Yakov Zel'dovich develops the nuclear chain reaction that is the engine that keeps stars burning.